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The goal

▶ We are interested in the dynamic treatment effect path of a policy.

▶ Examples include

1. Dynamic treatment effects in microeconomics (distributed lag models),

2. Impulse response functions in macroeconomics (local projections),

3. Event study paths in finance (event studies).



Notation

▶ Let β = {βh}H
h=1 be the parameter of interest.

▶ βh corresponds to treatment effect at horizon h.

▶ We have access to jointly normal estimates β̂ = {β̂h}H
h=1.



A primer on uncertainty quantification



Quantifying uncertainty

β

▶ Single parameter of interest β.

▶ Standard approach is to construct confidence
interval.

▶ Coverage is (1 − α): P(ℓ(X ) < β < u(X )) = 1 − α.

▶ Intuitively: values inside CI appear “plausible”
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Quantifying uncertainty

β1 β2

▶ Standard confidence intervals are pointwise valid.

▶ (ℓ(X ),u(X )) : P(ℓh(X ) < βh < uh(X )) = 1 − α.

▶ NOT uniformly valid.

▶ For example, with Cov(β̂k , β̂l) = 0:
P(ℓh(X ) < βh < uh(X ) ∀h) = (1 − α)H .



In two dimensions

▶ Fix α = 0.1, Cov(β̂1, β̂2) = 0.

▶ Pointwise CIs:
(ℓ(X ),u(X )) : P(ℓh(X ) < βh < uh(X )) = 0.9.

▶ P(ℓ(X ) < β < u(X )) = 0.92 = 0.81.

▶ P(β ∈ CRpointwise) = 0.81.



In two dimensions

▶ Fix α = 0.1, Cov(β̂1, β̂2) = 0.

▶ sup-t CIs: (ℓ(X ),u(X )) : P(ℓh(X ) < βh <
uh(X )) ≈ 0.949.

▶ P(ℓ(X ) < β < u(X )) = 0.9.

▶ P(β ∈ CRsup−t) = 0.9.



In two dimensions

▶ Fix α = 0.1, Cov(β̂1, β̂2) = 0.

▶ Wald confidence region: the set of β for
which a joint F-test of the observed point
estimates is not rejected.

▶ P(β ∈ CRWald) = 0.9.



Comments

▶ Many other confidence regions exist.

▶ Both CRsup−t and CRWald depend on
off-diagonal entries in Var(β). Example

▶ Power against different alternatives.

▶ CRWald infeasible to visualize in higher
dimensions.
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Quantifying uncertainty

β1 β2

▶ CRsup−t : (ℓk (X ),uk (X )).

▶ (ℓh(X ),uh(X )) : βh ± csup−tσβh .

▶ P(β ∈ CRsup−t) = 1 − α.

cf. Freyberger and Rai (2018); Montiel Olea and Plagborg-Moller (2019); Callaway and Sant’Anna
(2021); Jorda (2023); Boxell, Gentzkow, and Shapiro (2024); Mogstad, Romano, Shaikh, and
Wilhelm (2024)



In higher dimensions

▶ Volume of CRsup−t explodes relative to
CRWald .

▶ Implication: vast majority of paths inside
CRsup−t rejected by a joint test.

▶ Suppose we uniformly draw paths from
CRsup−t for α = 0.05.
At H = 24, 99.9% of paths rejected by a joint
test!



This paper

▶ We propose two types of plausible bounds that are
a) feasible to add to a standard plot.
b) (in general) narrower than existing confidence bands.

1. Restricting functional forms in data-driven way to ”reasonable shapes”
(Restricted Plausible Bounds).

2. Relaxing uniformity requirement (Averaged Plausible Bounds).
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Restricted Plausible Bounds



An example

▶ Blue : true treatment effect
β.



An example

▶ Black dots: estimates β̂.

▶ β̂h
i.i.d .∼ N(βh, σh).



An example

▶ Intervals: pointwise
confidence intervals for βh.



An example

▶ Set of outer lines: sup-t
confidence bands.



Uninformative data?

▶ Many paths with different
overall effect or different
shape appear “plausible”.



Uninformative data?

▶ Note: 1 out of 100,000
uniformly drawn paths in
CRsup−t not rejected by joint
test.



Uninformative data?

Restricting degrees of freedom:
▶ Parametric model for β (e.g. effect grows

linearly)

▶ time aggregation (e.g. monthly to quarterly).
Restricts β to “step function”.

▶ estimate via VAR: Restricting to functional
forms compatible with chosen VAR.
▶ AR(1) ⇒ βh = ρh.



Uninformative data?

▶ Our proposal: transparent, data-driven
restrictions on β.

▶ Economic intuition: smooth + eventually flat.



Restricted plausible bounds



A toy example (two surrogate models)

▶ βs = argminb ∥β − b∥ s.t. ∆b = 0
▶ model with constant treatment effect

▶ βl = argminb ∥β − b∥ s.t. ∆2b = 0
▶ model with linear treatment effect



A toy example

▶ If model M is fixed, inference for
surrogate βM is easy.

▶ E.g., model with linear treatment
effect:

β̂l = argmin
b

∥Y − b∥ s.t. ∆2b = 0

▶ CIs for βl follow (not β!).



A toy example

If model M(Y ) depends on the data, this creates a problem.

M = s if realization of Y1 is large M = l if realization of Y1 is small



Restricted plausible bounds (toy example)

Our proposal: CR for βM(Y ): M explicitly random, function of data

▶ Use data to select degrees of freedom/degree of smoothness (e.g. βl or βs).

▶ Take into account model uncertainty to construct uniformly valid CR for
selected surrogate.



An example

▶ three degrees of freedom

▶ chosen using the data



Restricted plausible bounds

Let β̂ ∼ N(β,Vβ), where β is a H × 1 vector.

Define More details

β∗ = argmin
b

(β̂ − b)′V−1
β (β̂ − b)︸ ︷︷ ︸

distance from β̂

(1)
such that b′D′

1W1(K )D1b < c1︸ ︷︷ ︸
small first difference,

after horizon K

and b′D′
3W2D3b < c2︸ ︷︷ ︸

small third difference

.

▶ “treatment path is eventually flat.”
▶ “treatment path is smooth.”
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Restricted plausible bounds

Equivalently,

β∗ = argmin
b

Q(b, λ1, λ2,K )

= argmin
b

(β̂ − b)′V−1
β (β̂ − b)︸ ︷︷ ︸

distance from β̂

+λ1 b′D′
1W1(K )D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b′D′
3W2D3b︸ ︷︷ ︸

penalty on third difference

▶ “treatment path is eventually flat.”
▶ “treatment path is smooth.”



Restricted plausible bounds

β∗ = argmin
b

Q(b, λ1, λ2,K )

= argmin
b

(β̂ − b)′V−1
β (β̂ − b)︸ ︷︷ ︸

distance from β̂

+λ1 b′D′
1W1(K )D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b′D′
3W2D3b︸ ︷︷ ︸

penalty on third difference

▶ Closed form solution for β∗:

β∗ =
(

V−1
β + λ1D′

1W1(K )D1 + λ2D′
3W3D3

)−1
V−1
β β̂

= Pβ̂



Restricted plausible bounds

For fixed λ1, λ2, K (fixed M):

▶ Distribution for β∗:

β∗ − Pβ ∼ N(0,PVβP ′)

▶ Can construct confidence region for {Pβh}H
h=1.

▶ What is Pβ = β(λ1, λ2,K )? “Surrogate of β” [Genovese and Wasserman,
2008] (cf. linear approximation)



Our proposal

Step 1: Use data to select Model M(Y ) (to select λ1, λ2, and K ).

▶ Tie Researchers’ hands by prespecifying M, the universe of models
considered

▶ Choice set includes:
▶ constant treatment effect model (df = 1)
▶ unrestricted estimates β̂ (df = H)

▶ Select model (e.g. degrees of freedom df (λ1, λ2,K )) using information
criterion.

More details



Our proposal

Step 2: Construct CR for βM(Y )

▶ Take into account that model M is random, function of data

▶ Use Valid Post-Selection Inference (Berk et al. [2013]) to create CRPOSI .
More details

▶ CRPOSI is a valid CR for selected surrogate.



Restricted plausible bounds

Proposition 1
For any treatment path β, we obtain valid coverage for its surrogate β(λ1, λ2,K ):

P[β(λ1, λ2,K ) ∈ CRPOSI ] ≥ 1 − α. (2)

Proof.
This follows immediately from the POSI guarantees:
P(βM ∈ CRPOSI |M(Y ) = M) ≥ 1 − α).



Restricted plausible bounds

Proposition 2
Suppose P

(
βM(Y ) = βM = β

)
= 1. Then,

P(β ∈ CRPOSI) ≥ 1 − α. (3)

Note: Under some regularity conditions, limVβ→0 P (βM(Y ) = βM = β) = 1.



Example



Example



Example

Additional example



Averaged plausible bounds



Averaged plausible bounds

▶ Do not require any functional form restrictions.

▶ Relax uniform coverage to a weaker notion of “average coverage”.

▶ True treatment paths will be on average within our bounds for (1 − α) of all
realizations.



Averaged plausible bounds

▶ Correspond to largest and smallest total treatment effect that is consistent
with the data.

▶ Boundary paths for testing the cumulative effect of the policy.

▶ Denoted by {l̃bh, ũbh}H
h=1.



Averaged plausible bounds

Proposition 3
A Wald test on the cumulative treatment effect with significance level (1 − α) will
reject

a) any treatment path β̃h with
∑H

h=1 β̃h >
∑H

h=1 ũb
1−α
h .

b) any treatment path β̃h with
∑H

h=1 β̃h <
∑H

h=1 l̃b
1−α
h .

▶ Any path that is not, on average, inside our averaged plausible bounds,
implies a cumulative treatment effect that is rejected by the corresponding
hypothesis test. More details



Estimates too noisy?

▶ Estimates can appear
uninformative based on
uniform confidence bands.



Averaged plausible bounds

▶ Averaged plausible bounds:
shaded red area

▶ Tight bounds on overall
treatment effect



Summary: traditional figure

▶ Includes pointwise valid CIs



Summary: modern figure

▶ Includes uniform CR



Summary: our figure

Includes three additional objects:

▶ Shaded red area: averaged
plausible bounds:

▶ Green lines:
1. Restricted plausible

bounds (dashed)
2. Restricted estimates

(solid)



Numerical Illustrations



The setup

▶ Blue : true treatment effect
β.

▶ Repeated simulations of
β̂ ∼ N(β,Vβ)



Estimation (restricted estimator β̂M(Y ))

Compare
▶ Unrestricted estimates β̂

▶ Restricted estimates β̂M(Y )



Estimation (restricted estimator β̂M(Y ))

▶ Depicted: MSEβ̂M(Y )
/MSEβ̂

▶ Good point estimation
properties

▶ Large improvement in MSE
(cf. James-Stein estimator)



Inference

Restricted Bounds (CRPOSI):
▶ Coverage of β approaches

95% as n → ∞.

▶ Coverage guarantee for βM .

▶ Much better than pointwise
(Even though tighter!).



Inference

▶ Restricted much narrower
than pointwise

▶ Much better coverage



Conclusion

▶ We are interested in (joint inference on) the dynamic treatment effect of a
policy.

▶ We propose two novel types of bounds to include in standard visualizations.
▶ Both bounds can be substantially tighter than standard confidence bands.
▶ Can provide useful insights when traditional confidence bands appear

uninformative.

▶ Improved point estimation through data-driven smoothing



Next steps

▶ Write the paper.

▶ Your thoughts:
a) Things you liked?
b) Things you didn’t like?
c) Additional things you’d like to see/discussed?
d) Thoughts on naming/framing?

▶ Papers that come to mind we could replicate?



Thank you!



Summary: our figure

Includes three additional objects:

▶ Shaded red area: averaged
plausible bounds:

▶ Green lines:
1. Restricted plausible

bounds (dashed)
2. Restricted estimates

(solid)
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Example 2

back



Averaged plausible bounds

Let

ub1−α = max
H∑

h=1

β∗
h s.t. (β∗ − β̂)′Σβ̂(β

∗ − β̂) = c(1−α), (4)

where c(1−α) denotes denotes the inverse of the chi-square cdf with 1 degree of
freedom at chosen significance level (1 − α).

▶ Define lb1−α analogously, replacing the max in (4) with min.
▶ Closed form solution.



Averaged plausible bounds

▶ Note: Only scalar corresponding to upper and lower limit of cumulative effect
is identified

▶ Many other ways to visualize. E.g.:
▶ shift point estimates (u̇b, l̇b)
▶ shift moving average (ŭb, l̆b)
▶ shift constant effects estimate (ũb, l̃b)



In two dimensions

▶ purple dotted lines give
bounds on cumulative effect

▶ paths inside these bounds
corresponds to paths inside

back



Comments

▶ Suppose Cov(β̂1, β̂2) = 0.9.

▶ Both CRsup−t and CRWald depend on
off-diagonal entries in Var(β). back



Notation

Let β̂ ∼ N(β,Vβ), where β is a H × 1 vector.

▶ D1 is first difference maker, D3 is third difference maker
▶ V1 = D1VβD′

1, V3 = D3VβD′
3 are variance matrices for first and third

differences
▶ W1(K ) = diag(zeros(K ),V1(K + 1 : end ,K + 1 : end)/mean(diag(V1(K + 1 :

end ,K + 1 : end))))
▶ W3 = diag(V3)/mean(diag(V3)

back



Model selection

▶ Residuals β̂ − β∗ = β̂ − P(λ1, λ2,K )β̂ = (I − P(λ1, λ2,K ))β̂

▶ Analog of residual degrees of freedom: trace(I − P(λ1, λ2,K ))

▶ Analog of model degrees of freedom: df(λ1, λ2,K ) = trace(P(λ1, λ2,K ))

▶ Choose β∗ that minimizes BIC analog (over pre-specified grid) :
Q(β∗, λ1, λ2,K ) + log(H)df(λ1, λ2,K )

back



Post-selection Inference

Consider CIs of the form {ℓh(X ),uh(X )}H
h=1 = β̂M ± Cασβ.

For α = 0.05:
▶ pointwise CIs: β̂M = β̂, Cα = 1.96

▶ sup-t CIs: β̂M = β̂, Cα “sup-t constant”

▶ POSI CIs:β̂M = β̂M(Y ), Cα “POSI constant”



Post-selection Inference

POSI CIs: {ℓh(X ),uh(X )}H
h=1 = β̂M(Y ) ± Cασβ.

For α = 0.05, let Cα be the minimal value that satisfies

P
(
max
M∈M

max
h

|th·M | ≤ Cα

)
≥ 0.95

▶ tj·M denotes the t-ratio for the proxy βM(Y ) at horizon h
▶ C0.05 depends on M, the universe of models considered
▶ C0.05 does not depend on the model selection procedure

back
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