(Visualizing) Plausible Dynamic Treatment Effect Paths

Simon Freyaldenhoven¹ Christian Hansen²

¹Federal Reserve Bank of Philadelphia

²University of Chicago

The views expressed are those of the authors and not necessarily those of the Federal Reserve Bank of Philadelphia, or the Federal Reserve System.

The goal

- We are interested in the dynamic treatment effect path of a policy.
- Examples include
 - 1. Dynamic treatment effects in microeconomics (distributed lag models),
 - 2. Impulse response functions in macroeconomics (local projections),
 - 3. Event study paths in finance (event studies).

Notation

- ▶ Let $\beta = \{\beta_h\}_{h=1}^H$ be the parameter of interest.
- \triangleright β_h corresponds to treatment effect at horizon h.
- ▶ We have access to jointly normal estimates $\hat{\beta} = \{\hat{\beta}_h\}_{h=1}^H$.

A primer on uncertainty quantification

- Single parameter of interest β .
- Standard approach is to construct confidence interval.
- ▶ Coverage is (1α) : $\mathbb{P}(\ell(X) < \beta < u(X)) = 1 \alpha$.
- Intuitively: values inside CI appear "plausible"

- ▶ Single parameter of interest β .
- Standard approach is to construct confidence interval.
- ▶ Coverage is (1α) : $\mathbb{P}(\ell(X) < \beta < u(X)) = 1 \alpha$.
- Intuitively: values inside CI appear "plausible"

- Standard confidence intervals are pointwise valid.
- $(\ell(X), u(X)) : \mathbb{P}(\ell_h(X) < \beta_h < u_h(X)) = 1 \alpha.$
- NOT uniformly valid.
- For example, with $Cov(\hat{\beta}_k, \hat{\beta}_l) = 0$: $\mathbb{P}(\ell_h(X) < \beta_h < u_h(X) \ \forall h) = (1 \alpha)^H$.

In two dimensions

- Fix $\alpha = 0.1$, $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0$.
- Pointwise CIs: $(\ell(X), u(X)) : \mathbb{P}(\ell_h(X) < \beta_h < u_h(X)) = 0.9.$
- $\mathbb{P}(\ell(X) < \beta < u(X)) = 0.9^2 = 0.81.$
- ▶ $\mathbb{P}(\beta \in CR^{pointwise}) = 0.81.$

In two dimensions

- ► Fix $\alpha = 0.1$, $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0$.
- ▶ sup-t CIs: $(\ell(X), u(X))$: $\mathbb{P}(\ell_h(X) < \beta_h < u_h(X)) \approx 0.949$.
- $\blacktriangleright \ \mathbb{P}(\beta \in CR^{sup-t}) = 0.9.$

In two dimensions

- Fix $\alpha = 0.1$, $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0$.
- ▶ Wald confidence region: the set of β for which a joint F-test of the observed point estimates is not rejected.
- $\blacktriangleright \ \mathbb{P}(\beta \in CR^{Wald}) = 0.9.$

Comments

- ► Many other confidence regions exist.
- ▶ Both CR^{sup-t} and CR^{Wald} depend on off-diagonal entries in $Var(\beta)$. Example
- Power against different alternatives.
- CR^{Wald} infeasible to visualize in higher dimensions.

Comments

- ► Many other confidence regions exist.
- ▶ Both CR^{sup-t} and CR^{Wald} depend on off-diagonal entries in $Var(\beta)$. Example
- Power against different alternatives.
- CR^{Wald} infeasible to visualize in higher dimensions.

cf. Freyberger and Rai (2018); Montiel Olea and Plagborg-Moller (2019); Callaway and Sant'Anna (2021); Jorda (2023); Boxell, Gentzkow, and Shapiro (2024); Mogstad, Romano, Shaikh, and Wilhelm (2024)

In higher dimensions

- Volume of CR^{sup-t} explodes relative to CR^{Wald} .
- ► Implication: vast majority of paths inside CR^{sup-t} rejected by a joint test.
- Suppose we uniformly draw paths from CR^{sup-t} for α = 0.05.
 At H = 24, 99.9% of paths rejected by a joint test!

This paper

- We propose two types of plausible bounds that are
 - a) feasible to add to a standard plot.
 - b) (in general) narrower than existing confidence bands.
- Restricting functional forms in data-driven way to "reasonable shapes" (Restricted Plausible Bounds).
- Relaxing uniformity requirement (Averaged Plausible Bounds).

This paper

- We propose two types of plausible bounds that are
 - a) feasible to add to a standard plot.
 - b) (in general) narrower than existing confidence bands.
- 1. Restricting functional forms in data-driven way to "reasonable shapes" (Restricted Plausible Bounds).
- 2. Relaxing uniformity requirement (Averaged Plausible Bounds).

▶ Blue : true treatment effect β .

- ▶ Black dots: estimates $\hat{\beta}$.
- $\triangleright \hat{\beta}_h \stackrel{i.i.d.}{\sim} N(\beta_h, \sigma_h).$

Intervals: pointwise confidence intervals for β_h .

Set of outer lines: sup-t confidence bands.

Many paths with different overall effect or different shape appear "plausible".

Note: 1 out of 100,000 uniformly drawn paths in CR^{sup−t} not rejected by joint test.

Restricting degrees of freedom:

- ightharpoonup Parametric model for β (e.g. effect grows linearly)
- time aggregation (e.g. monthly to quarterly). Restricts β to "step function".
- estimate via VAR: Restricting to functional forms compatible with chosen VAR.
 - $AR(1) \Rightarrow \beta_h = \rho^h.$

- ▶ Our proposal: transparent, data-driven restrictions on β .
- Economic intuition: smooth + eventually flat.

A toy example (two surrogate models)

- $\beta_s = \arg\min_b \|\beta b\|$ s.t. $\Delta b = 0$
- model with constant treatment effect
- - model with linear treatment effect

A toy example

- ▶ If model M is fixed, inference for surrogate β_M is easy.
- E.g., model with linear treatment effect:

$$\hat{\beta}_I = \arg\min_{b} \|Y - b\| \text{ s.t. } \Delta^2 b = 0$$

▶ Cls for β_I follow (not β !).

A toy example

If model M(Y) depends on the data, this creates a problem.

Restricted plausible bounds (toy example)

Our proposal: CR for $\beta_{M(Y)}$: M explicitly random, function of data

- ▶ Use data to select degrees of freedom/degree of smoothness (e.g. β_I or β_s).
- Take into account model uncertainty to construct uniformly valid CR for selected surrogate.

- ► three degrees of freedom
- chosen using the data

Let $\hat{\beta} \sim N(\beta, V_{\beta})$, where β is a $H \times 1$ vector.

$$\beta^* = \arg\min_{b} \ \underbrace{(\hat{\beta} - b)' V_{\beta}^{-1} (\hat{\beta} - b)}_{\text{distance from } \hat{\beta}}$$

such that
$$b'D'_1W_1(K)D_1b < c_1$$

small first difference,

- "treatment path is eventually flat."
- ▶ "treatment path is smooth."

Let
$$\hat{\beta} \sim N(\beta, V_{\beta})$$
, where β is a $H \times 1$ vector.

Define More details

$$\beta^* = \arg\min_{b} \ \underbrace{(\hat{\beta} - b)' V_{\beta}^{-1} (\hat{\beta} - b)}_{\text{distance from } \hat{\beta}}$$

such that
$$b'D'_1W_1(K)D_1b < c_1$$

small first difference,
after horizon K

 $b'D_3'W_2D_3b < c_2$. and small third difference

- "treatment path is eventually flat."
- "treatment path is smooth."

(1)

Equivalently,

$$\beta^* = \arg\min_{b} \ Q(b, \lambda_1, \lambda_2, K)$$

$$= \arg\min_{b} \ \underbrace{(\hat{\beta} - b)' V_{\beta}^{-1} (\hat{\beta} - b)}_{\text{distance from } \hat{\beta}} + \lambda_1 \underbrace{b' D_1' W_1(K) D_1 b}_{\text{penalty on first difference}} + \lambda_2 \underbrace{b' D_3' W_2 D_3 b}_{\text{penalty on third difference}}$$

- "treatment path is eventually flat."
- "treatment path is smooth."

$$\beta^* = \arg\min_{b} \ Q(b, \lambda_1, \lambda_2, K)$$

$$= \arg\min_{b} \ \underbrace{(\hat{\beta} - b)' V_{\beta}^{-1} (\hat{\beta} - b)}_{\text{distance from } \hat{\beta}} + \lambda_1 \underbrace{b' D_1' W_1(K) D_1 b}_{\text{penalty on first difference}} + \lambda_2 \underbrace{b' D_3' W_2 D_3 b}_{\text{penalty on third difference}}$$

Closed form solution for β*:

$$\beta^* = \left(V_{\beta}^{-1} + \lambda_1 D_1' W_1(K) D_1 + \lambda_2 D_3' W_3 D_3\right)^{-1} V_{\beta}^{-1} \hat{\beta}$$
$$= P \hat{\beta}$$

For fixed λ_1 , λ_2 , K (fixed M):

▶ Distribution for β^* :

$$\beta^* - P\beta \sim N(0, PV_{\beta}P')$$

- ► Can construct confidence region for $\{P\beta_h\}_{h=1}^H$.
- ▶ What is $P\beta = \beta(\lambda_1, \lambda_2, K)$? "Surrogate of β " [Genovese and Wasserman, 2008] (cf. linear approximation)

Our proposal

Step 1: Use data to select Model M(Y) (to select λ_1 , λ_2 , and K).

- \blacktriangleright Tie Researchers' hands by prespecifying $\mathcal{M},$ the universe of models considered
- Choice set includes:
 - constant treatment effect model (df = 1)
 - unrestricted estimates $\hat{\beta}$ (df = H)
- ▶ Select model (e.g. degrees of freedom $df(\lambda_1, \lambda_2, K)$) using information criterion.

Our proposal

Step 2: Construct CR for $\beta_{M(Y)}$

- ▶ Take into account that model *M* is random, function of data
- ► Use Valid Post-Selection Inference (Berk et al. [2013]) to create *CR^{POSI}*.

 More details
- ► *CR*^{POSI} is a valid CR for selected surrogate.

Restricted plausible bounds

Proposition 1

For any treatment path β , we obtain valid coverage for its surrogate $\beta(\lambda_1, \lambda_2, K)$:

$$\mathbb{P}[\beta(\lambda_1, \lambda_2, K) \in CR^{POSI}] \ge 1 - \alpha.$$
 (2)

Proof.

This follows immediately from the POSI guarantees:

$$\mathbb{P}(\beta_M \in CR^{POSI} | M(Y) = M) \ge 1 - \alpha).$$

Restricted plausible bounds

Proposition 2

Suppose $\mathbb{P}\left(\beta_{M(Y)} = \beta_M = \beta\right) = 1$. Then,

$$\mathbb{P}(\beta \in CR^{POSI}) \ge 1 - \alpha. \tag{3}$$

Note: Under some regularity conditions, $\lim_{V_{\beta}\to 0} \mathbb{P}(\beta_M(Y) = \beta_M = \beta) = 1$.

- Do not require any functional form restrictions.
- ▶ Relax uniform coverage to a weaker notion of "average coverage".
- ► True treatment paths will be on average within our bounds for (1α) of all realizations.

- Correspond to largest and smallest total treatment effect that is consistent with the data.
- Boundary paths for testing the cumulative effect of the policy.
- ▶ Denoted by $\{\tilde{lb}_h, \tilde{ub}_h\}_{h=1}^H$.

Proposition 3

A Wald test on the cumulative treatment effect with significance level $(1 - \alpha)$ will reject

- a) any treatment path $\tilde{\beta}_h$ with $\sum_{h=1}^H \tilde{\beta}_h > \sum_{h=1}^H \tilde{ub}_h^{1-\alpha}$.
- b) any treatment path $\tilde{\beta}_h$ with $\sum_{h=1}^H \tilde{\beta}_h < \sum_{h=1}^H \tilde{lb}_h^{1-\alpha}$.
- Any path that is not, on average, inside our averaged plausible bounds, implies a cumulative treatment effect that is rejected by the corresponding hypothesis test. More details

Estimates too noisy?

 Estimates can appear uninformative based on uniform confidence bands.

- Averaged plausible bounds: shaded red area
- Tight bounds on overall treatment effect

Summary: traditional figure

Includes pointwise valid CIs

Summary: modern figure

► Includes uniform CR

Summary: our figure

Includes three additional objects:

- Shaded red area: averaged plausible bounds:
- Green lines:
 - Restricted plausible bounds (dashed)
 - 2. Restricted estimates (solid)

The setup

- Blue : true treatment effect β .
- Repeated simulations of $\hat{\beta} \sim N(\beta, V_{\beta})$

Estimation (restricted estimator $\hat{\beta}_{M(Y)}$)

Compare

- ▶ Unrestricted estimates $\hat{\beta}$
- ▶ Restricted estimates $\hat{\beta}_{M(Y)}$

Estimation (restricted estimator $\hat{\beta}_{M(Y)}$)

- ▶ Depicted: $MSE_{\hat{\beta}_{M(Y)}}/MSE_{\hat{\beta}}$
- Good point estimation properties
- Large improvement in MSE (cf. James-Stein estimator)

Inference

Restricted Bounds (CRPOSI):

- ► Coverage of β approaches 95% as $n \to \infty$.
- ▶ Coverage guarantee for β_M .
- Much better than pointwise (Even though tighter!).

Inference

- Restricted much narrower than pointwise
- ► Much better coverage

Conclusion

- We are interested in (joint inference on) the dynamic treatment effect of a policy.
- We propose two novel types of bounds to include in standard visualizations.
 - ▶ Both bounds can be substantially tighter than standard confidence bands.
 - Can provide useful insights when traditional confidence bands appear uninformative.
- Improved point estimation through data-driven smoothing

Next steps

- Write the paper.
- ► Your thoughts:
 - a) Things you liked?
 - b) Things you didn't like?
 - c) Additional things you'd like to see/discussed?
 - d) Thoughts on naming/framing?
- Papers that come to mind we could replicate?

Summary: our figure

Includes three additional objects:

- Shaded red area: averaged plausible bounds:
- Green lines:
 - Restricted plausible bounds (dashed)
 - 2. Restricted estimates (solid)

Let

$$ub^{1-\alpha} = \max \sum_{h=1}^{H} \beta_h^*$$
 s.t. $(\beta^* - \hat{\beta})' \Sigma_{\hat{\beta}} (\beta^* - \hat{\beta}) = c^{(1-\alpha)},$ (4)

where $c^{(1-\alpha)}$ denotes denotes the inverse of the chi-square cdf with 1 degree of freedom at chosen significance level $(1-\alpha)$.

- ▶ Define $Ib^{1-\alpha}$ analogously, replacing the max in (4) with min.
- Closed form solution.

- Note: Only scalar corresponding to upper and lower limit of cumulative effect is identified
- Many other ways to visualize. E.g.:
 - ► shift point estimates (*ub*, *lb*)
 - ► shift moving average (*ub*, *lb*)
 - ▶ shift constant effects estimate (\tilde{ub}, \tilde{lb})

In two dimensions

- purple dotted lines give bounds on cumulative effect
- paths inside these bounds corresponds to paths inside

Comments

- ► Suppose $Cov(\hat{\beta}_1, \hat{\beta}_2) = 0.9$.
- ▶ Both CR^{sup-t} and CR^{Wald} depend on off-diagonal entries in $Var(\beta)$.

Notation

Let
$$\hat{\beta} \sim N(\beta, V_{\beta})$$
, where β is a $H \times 1$ vector.

- \triangleright D_1 is first difference maker, D_3 is third difference maker
- ▶ $V_1 = D_1 V_\beta D'_1$, $V_3 = D_3 V_\beta D'_3$ are variance matrices for first and third differences
- $W_1(K) = diag(zeros(K), V_1(K+1 : end, K+1 : end)/mean(diag(V_1(K+1 : end, K+1 : end))))$
- $ightharpoonup W_3 = diag(V_3)/mean(diag(V_3))$

Model selection

- ► Residuals $\hat{\beta} \beta^* = \hat{\beta} P(\lambda_1, \lambda_2, K)\hat{\beta} = (I P(\lambda_1, \lambda_2, K))\hat{\beta}$
- ▶ Analog of residual degrees of freedom: trace($I P(\lambda_1, \lambda_2, K)$)
- ▶ Analog of model degrees of freedom: $df(\lambda_1, \lambda_2, K) = trace(P(\lambda_1, \lambda_2, K))$
- ► Choose β^* that minimizes BIC analog (over pre-specified grid) : $Q(\beta^*, \lambda_1, \lambda_2, K) + \log(H) df(\lambda_1, \lambda_2, K)$

Post-selection Inference

Consider CIs of the form $\{\ell_h(X), u_h(X)\}_{h=1}^H = \hat{\beta}_M \pm C^{\alpha} \sigma_{\beta}$.

For $\alpha = 0.05$:

- pointwise CIs: $\hat{\beta}_M = \hat{\beta}$, $C^{\alpha} = 1.96$
- sup-t CIs: $\hat{\beta}_{M} = \hat{\beta}, C^{\alpha}$ "sup-t constant"
- ▶ POSI CIs: $\hat{\beta}_M = \hat{\beta}_{M(Y)}$, C^{α} "POSI constant"

Post-selection Inference

POSI CIs:
$$\{\ell_h(X), u_h(X)\}_{h=1}^H = \hat{\beta}_{M(Y)} \pm C^{\alpha} \sigma_{\beta}.$$

For $\alpha = 0.05$, let C^{α} be the minimal value that satisfies

$$\mathbb{P}\left(\max_{\pmb{M}\in\mathcal{M}}\max_{\pmb{h}}|t_{\pmb{h}\cdot\pmb{M}}|\leq\pmb{C}^{lpha}
ight)\geq 0.95$$

- ▶ $t_{j\cdot M}$ denotes the t-ratio for the proxy $\beta_{M(Y)}$ at horizon h
- $ightharpoonup C^{0.05}$ depends on \mathcal{M} , the universe of models considered
- $ightharpoonup C^{0.05}$ does not depend on the model selection procedure

