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Abstract

We consider point estimation and inference for the treatment effect path of a pol-

icy. Examples include dynamic treatment effects in microeconomics, impulse response

functions in macroeconomics, and event study paths in finance. We present two sets of

plausible bounds to quantify and visualize the uncertainty associated with this object.

One set of bounds covers the average (or overall) effect rather than the entire treatment

path. Our second set of bounds imposes data-driven smoothness restrictions on the

treatment path. Post-selection Inference (Berk et al. [2013]) gives us formal coverage

guarantees for these bounds. The chosen restrictions also imply novel point estimates

that perform well across our simulations. Both plausible bounds are often substantially

tighter than traditional confidence intervals, and can provide useful insights even when

traditional (uniform) confidence bands appear uninformative.
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1 Introduction

We are interested in the treatment effect path of a policy at discrete horizons h = 1, ..., H.

Examples include dynamic treatment effects in microeconomics, impulse response functions

in macroeconomics, and event study paths in finance. We write β = {βh}Hh=1 for the vector

that collects this dynamic treatment effect path up to the fixed maximum horizon of interest

H. We assume access to point estimates of the parameters βh, denoted by β̂h, that correspond

to the cumulative effect of the policy at horizon h = 1, . . . H. Throughout, we assume the

vector that collects the estimated dynamic treatment effect path, β̂, satisfies β̂ ∼ N(β, Vβ)

and that we have access to the covariance matrix Vβ. Leading examples to obtain such

estimates include distributed lag models, local projections, and event studies.1 We consider

both point estimation and uncertainty quantification, though our focus will be on the latter.

In particular, we introduce two approaches to visualize the uncertainty about the treatment

path, which we call cumulative and restricted plausible bounds. Both bounds are often

substantially tighter than traditional confidence intervals, and can provide useful insights

even when traditional (uniform) confidence bands appear uninformative.

The standard approach in economics to quantify and visualize the uncertainty associated

with parameter estimates is to construct confidence regions. Intuitively, a confidence region

visualizes to the reader what values of the parameter, in this case β, are “plausible” based

on the observed data. The idea being that values inside this region appear plausible, while

values outside of the region do not. The two predominant confidence regions in practice are

pointwise and sup-t confidence regions (e.g. Callaway and Sant’Anna [2021]; Jordà [2023];

Boxell et al. [2024]). A third alternative is the Wald confidence region CRWald. This region

simply collects all parameter values b that are not rejected by a standard Wald test of the

null hypothesis that β = b at level α. While a confidence region constructed from pointwise

confidence intervals does not achieve correct coverage for the vector β, both sup-t and Wald

confidence regions achieve valid coverage: P(β ∈ CRWald) = P(β ∈ CRsup−t) = (1− α).2

1We abstract away from approximation issues, but note that standard asymptotic approximations within

these settings along with access to consistent asymptotic variance estimators motivate this setup.
2We discuss these regions, and their construction, in more detail in Appendix A. For further discussion

of uniform confidence bands, and, in particular, the merits of sup-t confidence bands, also see Freyberger

and Rai [2018] and Olea and Plagborg-Møller [2019].
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(a) Volume of Wald confidence region relative to sup-

t confidence region as a function of H = dim(β).

(b) Exemplary event study plot, including true treat-

ment effect (blue line), point estimates, and pointwise

and sup-t confidence intervals.

Figure 1: Illustrative examples of confidence regions.

Sup-t and Wald confidence regions both come with some advantages and disadvantages.

Since the Wald region is an ellipsoid, a disadvantage of the Wald confidence region is that

it becomes infeasible to visualize in higher dimensions (i.e. when H > 3). The sup-t

confidence region has the advantage of being easy to visualize. However, the volume of the

sup-t confidence region quickly explodes relative to the volume Wald region. We illustrate

this difference in confidence region volume in Figure 1a, which compares the volume of Wald

and sup-t confidence regions when Vβ is an identity matrix of dimensionH. While the volume

of the Wald region is 85% of that of the sup-t region if H = 3, this ratio drops to less than

10% and around 0.1% with H = 12 and H = 24 respectively. These numbers are generally

even smaller if the entries in β̂ have non-zero correlation. It follows that the volume of the

sup-t region tends to be orders of magnitude larger than the volume of the Wald region for

the typical horizon that is depicted in event studies and impulse responses. One immediate

consequence is that, for even moderate horizons H, the overwhelming majority of paths

inside the sup-t bands would be rejected by a simple joint hypothesis test. This property
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seems unappealing to us. We thus argue that sup-t confidence bands may not always be

appropriate for visualizing what dynamic treatment effect paths are plausible and suggest

complementary visualizations.

Figure 1b provides an exemplary visualization meant to mimic event study plots seen in

empirical work in a hypothetical example. The object of interest is the treatment path of a

policy over a 36-month horizon. The blue line in the figure depicts the true treatment path.3

In this example, the treatment has an initially positive effect. The cumulative effect then

diminishes and quickly becomes negative with dynamics lasting 17 periods before flattening

out. We have access to jointly normal estimates {β̂h}36h=1, with observed point estimates β̂

given by the black dots. Figure 1b further includes both pointwise 95 percent confidence

intervals (inner confidence set as indicated by the dashes) and uniform 95 percent sup-t

confidence bands (outer confidence set). While the pointwise confidence intervals only permit

testing of pre-selected hypotheses for individual coefficients βh, the sup-t bands contain the

entire true path β in 95 percent of realized samples.

We note that the sup-t region in this example includes treatment paths that imply an

overall positive effect (paths with
∑H

h=1 βh > 0) and treatment paths with very different

shapes compared to β. In fact, β = 0 falls inside the sup-t bands, suggesting that the

null of “no treatment effect” is plausible. However, a joint test of the null hypothesis that

β = 0 yields a p-value of 1.54 × 10−9. More generally, a reasonable conclusion based on

the depicted sup-t region might be that the data are largely uninformative about β. On

the other hand, related to our discussion of Figure 1a, only around one path out of every

100,000 sampled paths will not be rejected by a joint test if we uniformly sample treatment

paths from the sup-t region depicted in Figure 1b. This discrepancy between the easy-to-

visualize sup-t region and the results of simple joint hypothesis tests suggests to us that the

sup-t confidence region may not be providing an empirically effective visualization of what

treatment effect paths are plausible.

In Figure 2, we therefore introduce two alternative ways to visualize plausible treatment

effect paths. Specifically, each panel in Figure 2 presents an event study plot produced from

a different data generating process. In each plot, the solid blue line represents the true

3We give more detail on the underlying DGP in Section 4.
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(a) treatment path constant (b) treatment path smooth, eventually flat

(c) treatment path hump-shaped (d) treatment path wiggly

Figure 2: Four exemplary event-study plots including our proposals. Our proposed visualization

includes three additional objects. The shaded area provides the cumulative plausible bounds. The

dashed green lines provide the restricted plausible bounds, and the thick solid green line provides

the corresponding restricted estimates. We further include the true treatment path (thin blue line)

in each generated dataset and its surrogate (dotted red line).
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treatment effect path. Elements from the “standard” event study plot are provided by the

black dots which give point estimates of the treatment effect at each horizon and by the

inner and outer confidence intervals corresponding respectively to the usual pointwise and

sup-t confidence intervals.4 In addition, each plot includes three new features: (i) the shaded

red area, (ii) the dashed and solid green lines, and (iii) a dotted red line.

The shaded red area represents our proposed 95% cumulative plausible bounds. We con-

struct these bounds so that the average treatment effect across the depicted horizons will

be within these bounds for 95% of all realizations of the data. For example, in Figure 2b,

these bounds suggest that the average effect of the policy over the 36 periods depicted is

between (-0.248, -0.156), and thus that the overall effect of the policy over the 36 periods

is strictly negative and inside the window (-8.93 , -5.62). In contrast to the standard sup-t

region, these bounds suggest that a treatment path with no overall effect of the policy is not

plausible. These cumulative plausible bounds have an alternative interpretation in terms

of the overall treatment effect path. Specifically, the cumulative plausible bounds are such

that the treatment path β (depicted as the solid blue line) will on average be within these

bounds for 95% of all realizations of the data.

The dashed green lines correspond to our proposed restricted plausible bounds, which

are centered around restricted estimates provided by the solid green line. These restricted

estimates and bounds are motivated by envisioning a researcher who is interested in un-

derstanding key features of the treatment effect path but is not concerned with necessarily

covering the entire true path at every horizon. However, we also imagine the researcher as

being ex ante unsure about what the important features are and wanting to use the data to

help select a restricted model for summarizing the treatment effect path.

More concretely, we construct the restricted estimates and plausible bounds by using

a statistical model selection procedure to select an approximating model from within a

pre-specified universe of candidates. We consider a default set of models motivated by a

preference for smooth dynamics that eventually die out induced by shrinking first and third

differences of β̂, though we note that the procedure could be applied with any finite, pre-

specified universe of models. The restricted estimates are then simply the point estimates

4Figure 2b is based on the same point estimates β̂ as Figure 1b.

5



of the treatment path based on the selected model. We construct the restricted plausi-

ble bounds to provide uniform coverage accounting for data-dependent model selection by

directly applying Berk et al.’s (2013) Post-Selection Inference (PoSI) within our setting.

Looking at the restricted estimates and restricted plausible bounds in each scenario depicted

in Figure 2 paints a starkly different picture compared to the sup-t intervals. In all cases,

the restricted plausible bounds are relatively narrow and seemingly quite informative about

the broad features of the treatment effect paths.

Finally, it is important to be clear that the inferential target of the restricted plausible

bounds in the population is not the true treatment path. Rather, the restricted plausible

bounds provide uniform coverage of a surrogate path given by the approximation that would

be obtained by applying the selected model to the true effect path. We depict the selected

surrogate for each scenario in Figure 2 with a dotted red line. In Figure 2a and Figure 2b,

this surrogate is indistinguishable from the true treatment path. In Figure 2c and Figure

2d, the surrogate differs from the true treatment path but visually captures what seem to be

key features of the overall treatment path. Indeed, we suspect many empirical researchers,

if given the true treatment path from Figure 2d, would actually be more interested in the

smooth approximation provided by the surrogate in this case. That is, we view the fact that

the restricted plausible bounds cover a data-dependent approximation to the population

treatment effect path as an appealing feature within our setting.

In summary, our proposal is to augment plots typically provided in empirical papers with

two additional visualizations (the shaded red area, and the dashed and solid green lines).

The collection of visualizations, including standard pointwise and sup-t intervals, provides a

more complete depiction of plausible effect paths with each element of the path being useful

for related, but different, inferential goals. We believe that the conclusions a reader may

draw when including the additional visualizations are interestingly different than those that

can easily be drawn with only the traditional event study plot.

Our paper connects to several strands in the literature. We obtain our restricted plausible

bounds and estimates by considering a finite set of candidate models for β. This approach is

thus closely related to work that considers parametric models and approximations to β. Such

approaches have been studied going back at least to Almon [1965], who imposes a parametric
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model on distributed lag coefficients. More recently, Barnichon and Matthes [2018] propose

approximating impulse responses with a set of basis functions, and Barnichon and Brownlees

[2019] propose to shrink impulse response estimates towards polynomials. While related, we

differ from these approaches by focusing on inference for a data-dependent surrogate effect

path; see, for example, Genovese and Wasserman [2008] for a general discussion of inference

on surrogates.

We operationalize our restricted plausible bounds by using data-dependent selection from

a universe of candidate models with different fixed degrees of shrinkage over first and third

differences. This model universe is closely related to the structure employed in Shiller [1973]

which takes a fully Bayesian approach to estimating a distributed lag model under a normal

prior on the dth order difference of β. Our restricted estimates are thus akin to point esti-

mates that could be obtained by taking an empirical Bayes approach within the framework

of Shiller [1973]. From the empirical Bayes perspective, one could then potentially adapt

Armstrong et al. [2022] to the present context to obtain interval estimates. While a poten-

tially interesting avenue for further research, we explicitly do not leverage this connection.

Our chief focus is the restricted plausible bounds which provide uniform frequentist coverage

for the population value of the selected surrogate.

Our restricted plausible bounds provide uniform coverage for the selected surrogate ac-

counting for data dependent model selection. To maintain these coverage guarantees, we use

a version of post-selection inference (PoSI) confidence intervals (Berk et al. [2013]). Given

that our inferential target is the population value of the selected model, we note that one

could adopt other approaches from the literature on selective inference; see, e.g., Taylor and

Tibshirani [2015] and Kuchibhotla et al. [2022] for excellent reviews.

There are a variety of other approaches to quantifying and visualizing uncertainty about

treatment effect paths available in the literature. For example, Sims and Zha [1999] argues

that conventional pointwise bands common in the literature should be supplemented with

measures of shape uncertainty, and proposes such measures. Jordà [2009] provides a method

to construct simultaneous confidence regions for impulse responses given propagation tra-

jectories. Freyberger and Reeves [2018] propose a uniformly valid inference method for an

unknown function or parameter vector satisfying certain shape restrictions. More generally,
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inference for the treatment effect path is tightly tied to more general nonparametric inference

problems; see, e.g., Chen et al. [forthcoming] for an interesting recent example that explic-

itly allows for use of a data-dependent sieve dimension. The “shotgun plot” of Inoue and

Kilian [2016], which depicts a random sample of B impulse responses contained in the joint

Wald confidence set, provides an interesting alternative approach focused on visualization

of plausible treatment effect paths. We believe our proposal to provide simple additional

visual elements to the usual event study plot provides a useful complement to this existing

literature.

2 Cumulative Plausible Bounds

We first present a simple visual feature, the cumulative plausible bounds, that can be added

to a standard event study plot. This visualization does not impose any functional form or

smoothness assumptions on the underlying treatment path, but, in terms of the full event

path, it also will not achieve uniform coverage. Rather, the cumulative plausible bounds

use a weaker notion of “cumulative coverage” when thought about in terms of the full event

path: The true treatment path will on average be within the cumulative plausible bounds in

(1−α)% of all realizations of the data for a given significance level α. That is, by providing

valid inference for the average effect over the horizon H, our cumulative plausible bounds

provide a simple visual element that conveys uncertainty about the average treatment effect.

These cumulative plausible bounds are simply visualizations of the dynamic treatment

path corresponding to the largest and smallest sum of all treatment effects up to horizon H

not rejected by a standard hypothesis test. They can be interpreted as boundary paths that

would be consistent with the upper and lower limits of a confidence interval for the overall

effect of the policy over H periods. Formally, let

ub1−α = max
H∑

h=1

β∗
h s.t. (β∗ − β̂)′V −1

β (β∗ − β̂) = κ(1−α), (1)

where κ(1−α) denotes the inverse of the chi-square cdf with one degree of freedom at chosen

significance level (1−α). We further define lb1−α analogously, replacing the max in (1) with

min. Since both ub1−α and lb1−α, corresponding to the upper and lower limit of the overall
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effect are scalars, there are infinitely many treatment paths that correspond to these bounds

on the overall treatment effect. To visualize the bounds, we use (U,L)1−α = {U1−α
h , L1−α

h }Hh=1,

where U1−α
h = ub1−α

H
and L1−α

h = lb1−α

H
.5 We choose this visualization as the interval (U,L)1−α

is a (1 − α)% Wald confidence interval for the average effect of the policy over the horizon

H, 1
H

∑H
h=1 βh.

The following trivial proposition clarifies how coverage of these cumulative plausible

bounds relates to coverage of the treatment path,

Proposition 1. The true treatment path β will on average (over H) be within the cumulative

plausible bounds for (1− α) of all realizations:

P

(∑H
h=1 L

1−α
h

H
<

∑H
h=1 βh

H
<

∑H
h=1 U

1−α
h

H

)
= (1− α). (2)

Proof. By construction, a Wald test on the cumulative treatment effect with significance

level (1− α) will reject

a) any treatment path β̃h with
∑H

h=1 β̃h >
∑H

h=1 U
1−α
h ,

b) any treatment path β̃h with
∑H

h=1 β̃h <
∑H

h=1 L
1−α
h .

Since a Wald test for the cumulative effect has correct size, the result follows immediately.

Proposition 1 states that, for a given significance level α, the true treatment path will on

average be within our bounds for (1−α)% of all realizations. This follows immediately from

the fact that any path that is not, on average, inside the cumulative plausible bounds implies

an overall treatment effect over H periods that is rejected by the corresponding hypothesis

test.

5Instead of using bounds (U,L)1−α that are constant across h, one could alternatively depict bounds that

reflect the shape of the unrestricted estimates.

9



3 Restricted Plausible Bounds

The second idea we pursue is to present confidence regions that cover approximations of the

true effect path that have “reasonable shapes”. We term these confidence regions restricted

plausible bounds. Here, we define “reasonable shapes” by pre-specifying a universe of models.

We then use data-dependent model selection to choose a good representation for β̂ from

among this set. Intuitively, this approach is related to directly imposing a functional form

restriction as is often done in empirical work, for example by

� specifying a parametric model for β, e.g. imposing a constant treatment effects model

(βh = βh′ ∀h, h′),

� aggregating the underlying dataset over time (e.g. monthly to quarterly), which effec-

tively restricts β to “step functions”,

� estimating an Impulse response function (IRF) via a vector auto regression (VAR),

which restricts the IRF to functional forms compatible with chosen VAR (cf. the

discussions in Li et al. [2024] and Olea et al. [2024]).

One key feature of our approach is that we do not rely on a fixed functional form restric-

tion or make use of some other implicit or ad hoc device to choose a restricted model. Rather

we select a model, and then take model selection explicitly into account when constructing

confidence bounds. That is, we propose a model selection procedure that is explicit, trans-

parent, and will allow us to maintain formal coverage guarantees instead of implicitly using

the data to select a restricted model, which leads to invalid inference.

Before we formally define our proposal, we introduce some necessary notation. We first

borrow from the nonparametric statistics literature to introduce the notion of a “surrogate”

(cf. Genovese and Wasserman [2008]). A surrogate model βM is close to, but potentially

simpler, than β. We note that the surrogate model is a population object that approximates

β, the true treatment path. For example, we may define a constant treatment effects surro-

gate of β as βs = argminb(β − b)′(β − b) s.t. ∆b = 0. If the surrogate M is fixed a priori

(and not itself a function of the data), inference for βM is straightforward, though we stress
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that any inferential statements in this case will be about βM and not β.6 However, failing to

take into account that the data is used to select the surrogate creates a problem for inference

(e.g. Leeb and Pötscher [2005] or Roth [2022]). To avoid this problem, in our setting the

surrogate is explicitly a function of the data (or more precisely, of the unrestricted estimates

β̂), and we may thus write βM(β̂). In a first step, we use the data to select the surrogate

model. In a second step, we then create a uniformly valid confidence region for the selected

surrogate, taking into account that the choice of surrogate is also random (i.e. a function of

the data).

Given that we are doing model selection from a specified universe of models, a key choice is

the specific model universe we consider. We specifically consider a model universe motivated

from the following economic intuition:

1. The dynamics of the treatment effect die off eventually. That is, after K periods, the

treatment effect is constant. We treat K as unknown and allow K to be as large as

H, thus allowing dynamics across the entire estimated horizon.

2. The dynamic treatment path is “smooth,” where we measure smoothness using the

third differences of the treatment path.

In practice, we introduce shrinkage over first and third differences of β̂ to implement 1. and

2.

Formally, we assume that the estimates of the treatment path β̂ are jointly normal with

β̂ ∼ N(β, Vβ), where Vβ = σ2V , σ2 = 1
H

∑H
h=1 Vβ(h, h), and V is positive-definite. Taking β̂

as input, we define the following object:

β̃(λ1, λ2, K) = argmin
b

Q(b, λ1, λ2, K)

= argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

+λ1 b′D′
1W1(K)D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b
′D′

3W3D3b,︸ ︷︷ ︸
penalty on

third difference

(3)

6Targeting a simple surrogate function is akin to the standard approach in economics of estimating linear

models even when the conditional expectation function is not believed to be linear. One can think of the

linear model as a “surrogate model” capturing the best linear predictor. Inference will then be about the

linear surrogate, and not the “truth.”
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where

� D1 and D3 are the (H ×H − 1) and (H ×H − 3) first and third difference operators,

� η = (λ1, λ2, K) are tuning parameters,

� W1(K) and W3 are weighting matrices where W1(K) only places weight on first differ-

ences for horizon K ≤ H and beyond. (See Appendix B for further details.)

Solving (3) provides a closed form solution7 for β̃(λ1, λ2, K) := β̃(M) given by

β̃(M) =
(
V −1 + λ1D

′
1W1(K)D1 + λ2D

′
3W3D3

)−1
V −1β̂

= P (M)β̂.

For fixed M = (λ1, λ2, K), it immediately follows that

β̃(M)− P (M)β ∼ N(0, VM), (4)

where VM = P (M)VβP (M)′. Here, P (M)β = βM can be thought of as a particular surrogate

model of β. Intuitively, P (M)β corresponds to a “projection” of the true treatment path

β into a lower dimensional space. Given (4), it would be straightforward to construct a

confidence region for {βM,h}Hh=1, where βM,h denotes the hth entry in vector βM , for a given,

fixed value of the tuning parameters. However, knowing ex ante what values to use for λ1,

λ2, and K seems challenging. We thus use model selection to choose λ1, λ2, and K - or,

equivalently, to choose the surrogate model M .

Specifically, we use the estimated β̂ and an object akin to an information criterion to

select the surrogate M . First, note that we can construct the “residuals” β̂ − β̃(M) =

7Rather than use (3), one could alternatively consider a constrained optimization with tuning parameters

c1, c2, and K, explicitly bounding the first and third difference, by using

β̂(c1, c2,K) = argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

such that b′D′
1W1(K)D1b ≤ c1︸ ︷︷ ︸

small first difference,
after horizon K

and b′D′
3W2D3b ≤ c2︸ ︷︷ ︸

small third difference

.

However, this formulation does not have a closed form solution, making it less appealing to us as a practical

matter in the present setting.
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β̂ − P (M)β̂ = (I − P (M))β̂. We use this residual formulation to define an analog of model

degrees of freedom given by df(M) = trace(P (M)). We then select a model that minimizes

a BIC analog over M where M denotes the universe of values for M = (λ1, λ2, K):

M̂ = argmin
M∈M

(β̂ − β̃(M))′V −1
β (β̂ − β̃(M)) + log(H)df(M).

We tie the researcher’s hands by pre-specifying M, the universe of models considered.

In our implementation, M includes both a constant, linear, quadratic and cubic treatment

effect model (with one, two, three, and four degrees of freedom respectively), as well as the

unrestricted estimates β̂ (with H degrees of freedom). M further includes surrogates of the

form P (M)β = βM using a grid over (λ1, λ2, K). We discuss our implementation in more

detail in Appendix B though note that M does not depend on β̂ or σ.

Remark 1. One could use other model universes and shrinkage methods. Examples of al-

ternative approaches include Barnichon and Matthes [2018] and Barnichon and Brownlees

[2019]. We have chosen a class that we believe will be a reasonable representation of beliefs

in many applications. Our approach with this model class is also particularly easy computa-

tionally, which allows us to nest a large universe of models. We believe these features make

the specific structure and estimation approach we employ a good default.

Given the selected surrogate M̂ , we define the restricted estimates as β̃(M̂). However,

we cannot directly apply (4) to obtain a valid confidence region for the population value of

the surrogate effect path βM̂ because M̂ was selected by looking at the data, β̂. Thus, in

a second step, we use Valid Post-Selection Inference (Berk et al. [2013]), which explicitly

accounts for data-dependent (and thus random) model selection, to construct a uniformly

valid confidence region for βM̂ . These confidence intervals, our restricted plausible bounds,

are rectangular regions of the form CRPOSI = {ℓh(X), uh(X)}Hh=1 for (ℓh(X), uh(X)) =

(β̃(M̂)h−CαV
1/2

M̂
(h, h), β̃(M̂)h+CαV

1/2

M̂
(h, h)) where β̃(M̂)h denotes the restricted estimate

of the effect at horizon h and V
1/2

M̂
(h, h) is the square root of the hth diagonal entry of VM̂ .

To ensure uniform validity we use the “PoSI constant” of Berk et al. [2013] as Cα, defined

as the minimal value that satisfies

P
(
max
M∈M

max
h

|th·M | ≤ Cα

)
≥ (1− α),
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where th·M = V
−1/2
M (h, h)ξh, and ξh is the hth element of multivariate normal vector ξ with

mean 0H and variance VM . Importantly, Cα depends on M, the universe of models consid-

ered, but not on the model selection procedure.8

The following proposition is a direct application of Berk et al. [2013].

Proposition 2. For any treatment path β, we obtain valid coverage for its surrogate βM̂ :

P[βM̂ ∈ CRPOSI ] ≥ 1− α. (5)

Proof. This follows immediately from the guarantees in Berk et al. [2013]:

P(βM ∈ CRPOSI |M̂ = M) ≥ 1− α).

Proposition 2 guarantees that our restricted plausible bounds cover the selected surrogate

to the truth in at least (1− α)% of sample realizations.

Remark 2. An immediate consequence of Proposition 2 is that P(β ∈ CRPOSI) ≥ 1 − α

if P (βM̂ = βM = β) = 1. That is, in cases where model selection is effectively non-random

and the selected model coincides with β, the restricted plausible bounds will also provide valid

coverage for the true treatment path. Given the form of our BIC type objective for selecting

M̂ and that the unrestricted estimates are always included in our default model universe, one

could provide conditions for P (βM̂ = βM = β) = 1 under a sequence of models where σ2 → 0

and surrogate treatment paths were well-separated – e.g. where ∥β − βM∥ ≥ δ > 0 for all

candidate models M such that βM ̸= β. While technically possible, we question the utility

of this viewpoint from providing a useful finite sample approximation and because we view

the surrogate as an economically interesting summary of the treatment path that incorporates

economically motivated shrinkage with an aim of conveying key features that can be picked

out relative to noise captured by Vβ.

8An implication is that one could select the model using methods other than minimizing our BIC analog.

We found that minimizing this BIC analog performed well across our simulations and believe it provides a

good default.
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Remark 3. Throughout we work with the unrestricted estimates β̂. Our motivation is to

augment visualizations of event-study paths within the setting where β̂ ∼ N(β, Vβ) provides

a reasonable approximation. We further note that the interpretation of event-study plots as

currently displayed with point estimates and pointwise confidence intervals essentially relies

on exactly this approximation. An alternative would be to estimate the restricted models

directly on the data. In settings where β̂ ∼ N(β, Vβ) provides a good approximation, we

suspect that such an approach will yield qualitatively similar results. It may be interesting

to explore directly estimating restricted models in settings such as difference-in-differences

with relatively few treatment or control observations where the approximation β̂ ∼ N(β, Vβ)

is questionable.

4 Numerical Results

In this section, we illustrate the properties of our restricted plausible estimates and bounds

as well as our cumulative plausible bounds in simulation experiments with treatment paths

generated to resemble treatment path dynamics that practitioners may encounter. We illus-

trate these treatment paths in Figure 3. We consider a constant treatment effect path (cf.

Figure 3a); a treatment path that smoothly declines before flattening out after 17 periods

(cf. Figure 3b); a hump-shaped treatment path with dynamics that continue for the entire H

periods (cf. Figure 3c); and a “wiggly” treatment path (cf. Figure 3d). We describe the ex-

act DGP for each of the four panels in more detail in Online Appendix Table 1.9 The object

of interest is the treatment path over a 36-month horizon. We have access to jointly normal

estimates {β̂h}36h=1. For each of these four treatment paths, we then draw 1,000 realizations

of β̂ ∼ N(β, Vβ).
10

We first compare the point estimation properties of the unrestricted estimates β̂ with our

restricted estimates β̃(M̂) for each of these four scenarios. In particular, Figure 4 depicts

the ratio in mean-squared error, MSEβ̃(M̂)/MSEβ̂, as a function of σ2, which scales the

covariance matrix of the estimates, Vβ (see Online Appendix C for more detail). The largest

9Figure 2 provides one example realization from each of these DGPs.
10In the figures that follow, Vβ is diagonal with its entries specified in Online Appendix C. We repeat our

exercise with more general covariance matrices in Online Appendix E.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Figure 3: Four exemplary treatment effect paths β

value of σ2 in Figure 4 (corresponding to the left most point) thus represents relatively noisy

estimates.11 We conclude that in most cases our restricted estimator has excellent point

estimation properties when the target is the true treatment path β. In the three panels that

have a smooth treatment path (Figures 4a-4c), the MSE of our restricted estimate is a full

order of magnitude lower compared to the unrestricted estimate. In Figure 4d, our restricted

estimate has a lower MSE when estimates are very noisy, a higher MSE for intermediate sizes

of σ2, and a similar MSE when σ2 is small. However, we suspect that a lower-dimensional

summary of β, as provided by the surrogate path, may in fact be the policy relevant object

in cases where the true treatment path exhibits complicated dynamics as in this panel (cf.

11Figure 2 was created from a single realization of the the left most point in Figure 4. To give the reader

a sense of the scale of the x-axes, Online Appendix Figure 2 also illustrates a single realization of the right

most point in Figure 4.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Figure 4: Relative performance of restricted and unrestricted estimators. Depicted is the ratio in

mean-squared error between restricted and unrestricted estimates, MSE(β̃(M̂))

MSE(β̂)
, as a function of the

amount of noise σ2 in the initial estimates β̂.

Figure 3d).

We next turn our attention to inference and first look at coverage. We again consider the

four previous DGPs and vary the amount of noise in the estimation of β by varying σ2. The

result is depicted in Figure 5, where we set α = 0.05. The pointwise, sup-t, and restricted

coverage numbers, as indicated by the three solid lines represent the empirical analogue to

the usual notion of uniform coverage for β: It reflects the fraction of simulations in which the

true treatment path β falls entirely inside the pointwise confidence intervals (black), sup-t

intervals (red), and restricted plausible bounds (yellow), respectively.

Across all four DGPs, the pointwise confidence intervals only cover the true treatment
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Figure 5: Coverage properties of various confidence regions as a function of the amount of noise

σ2 in the initial estimates β̂.

path in 15-20% of simulations. On the other hand, the sup-t intervals achieve nominal cov-

erage across DGPs. The restricted plausible bounds are not constructed to provide uniform

coverage for the true treatment path. It is thus not surprising that these bounds do not

cover the entire treatment path in 95% of simulations across all DGPs. However, we do see

that their coverage appears to converge towards 95% as the amount of noise in the initial

estimates decreases (cf. Remark 2). Further, the restricted plausible bounds perform sub-

stantially better than the pointwise confidence intervals in covering the true treatment path

when the true path is smooth. In the scenario of a wiggly treatment path, the restricted

bounds exhibit poor coverage properties when the amount of noise in the initial estimates is

large.
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Proposition 2 guarantees that the plausible bounds cover the selected surrogate to the

truth in at least 95% of realizations. In Figure 5, the restricted plausible bounds’ coverage

of the surrogate is illustrated by the dashed purple line. We see that this coverage is above

95% for all levels of σ2 across all DGPs. We reemphasize, that in the scenario of a wiggly

treatment path, a smooth approximation to the true path, for which we obtain valid coverage,

may often be the policy relevant object.

Finally, we note that, in line with Proposition 1, the cumulative bounds (as indicated by

the dashed green lines) indeed cover the cumulative effect of the policy in 95% of simulations.

That is, the true treatment path is on average within these bounds in 95% of simulations.

In order to to cover the true path in a higher fraction of simulations, the sup-t bands

are generally wider than the pointwise bands (cf. Figure 1). We illustrate this across

our simulations in Figure 6, which depicts the average width of the sup-t bands and the

restricted bounds, relative to the pointwise intervals. While the sup-t bands are wider than

the pointwise bands across the parameter space, the restricted bounds are in fact narrower

throughout much of the parameter space, despite their improved coverage properties. For

example, in the “Constant Treatment Effect” scenario, the restricted bounds are less than

half as wide as the pointwise bands and less than a quarter as wide as the sup-t bands

for all noise levels σ2. Yet, they cover close to 95% of all realizations, while the pointwise

confidence intervals only cover the true treatment path in 15-20% of simulations.12 The

restricted bounds are only wider than the sup-t bands when (i) the treatment path is wiggly

and (ii) there is very little noise. In this region of the parameter space, our model selection

mechanism infers that the wiggles in the treatment path are large enough relative to the

noise level that heavy smoothing will incur a large cost in terms of losing fit. With relatively

little smoothing, our restricted plausible bounds are then slightly more conservative than

the standard sup-t bands, which follows immediately from the results in Berk et al. [2013].

Finally, we shed some more light on the model selection of our procedure in Figure 7.

12As we show in Online Appendix Figure 4, we select surrogate models βM with significantly reduced

degrees of freedom, relative to the unrestricted estimates, in the first three DPGs. This effective dimension

reduction explains both the improvement in point estimation properties of β̃(M̂) relative to the unrestricted

estimates β̂ documented in Figure 4, and the decrease in width of the confidence intervals documented in

Figure 6.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Figure 6: Average width of confidence regions relative to pointwise confidence intervals as a

function of the amount of noise σ2 in the initial estimates β̂.

Each panel depicts the 1,000 selected surrogates across our simulations in light brown. Since

the chosen surrogates will depend on the precision of the initial estimates β̂ we fix σ2 at

0.014, corresponding to the amount of noise in the examples in Figure 2. When the true

treatment path is smooth (Panels 7a-7c), the chosen surrogate tends to closely approximate

the truth. In contrast, the chosen surrogate is often simpler than β while retaining its main

features when the true treatment path is not smooth (Panel 7d).13

13In Online Appendix Figure 5, we further illustrate how the chosen surrogates depend on σ2 for our

Wiggly DGP.

20



(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Figure 7: Illustration of the 1,000 chosen surrogates for σ2 = 0.014 (log(σ2) = −4.27), corre-

sponding to the left most point in Figures 4-6, and thus a large amount of noise in β̂.

5 Conclusion

We are interested in (joint inference on) the dynamic treatment effect of a policy. We pro-

pose two visualization devices, which we term restricted and cumulative plausible bounds, to

include in standard visualizations of estimated effect paths. Because both bounds explicitly

target objects other than uniformly covering the entire treatment path, they can be substan-

tially tighter than standard pointwise and uniform confidence bands. Our bounds may thus
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provide useful insights about features of treatment effect paths when traditional confidence

bands appear uninformative. As an auxiliary benefit, producing our restricted plausible

bounds also provides additional restricted estimates that capture simplified representations

of the dynamic effect path. Unsurprisingly, these restricted estimates have improved point

estimation properties relative to the unrestricted estimates in settings where the treatment

effect path is smooth.

It would be intersting to explore the notion of explicitly covering data-dependent sur-

rogates in other settings. While alternative model universes or model selection rules may

be needed outside of the present setting, our proposal can easily be adapted to do so. For

example, it would be interesting to explore related ideas in more structural settings.
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José Luis Montiel Olea and Mikkel Plagborg-Møller. Simultaneous confidence bands: Theory,

implementation, and an application to SVARs. Journal of Applied Econometrics, 34(1),

2019.

José Luis Montiel Olea, Mikkel Plagborg-Møller, Eric Qian, and Christian K Wolf. Dou-

ble robustness of local projections and some unpleasant varithmetic. Technical report,

National Bureau of Economic Research, 2024.

23



Jonathan Roth. Pretest with caution: Event-study estimates after testing for parallel trends.

American Economic Review: Insights, 4(3):305–322, 2022.

Robert J Shiller. A distributed lag estimator derived from smoothness priors. Econometrica,

pages 775–788, 1973.

Christopher A Sims and Tao Zha. Error bands for impulse responses. Econometrica, 67(5):

1113–1155, 1999.

Jonathan Taylor and Robert J Tibshirani. Statistical learning and selective inference. Pro-

ceedings of the National Academy of Sciences, 112(25):7629–7634, 2015.

24


	Introduction
	Cumulative Plausible Bounds
	Restricted Plausible Bounds
	Numerical Results
	Conclusion

