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A A primer on confidence regions

If β is a scalar, the standard approach in economics to quantify and visualize the uncertainty

associated with an estimate for β is to construct a confidence interval. For a chosen size

α, such a confidence interval covers the true value β in 100 ∗ (1− α)% of all realizations of

the data: P(ℓ(X) < β < u(X)) = 1 − α where ℓ(X) and u(X) denote the lower and upper

bounds of the confidence interval and observed data are a realization from random variable

X. Intuitively, these intervals visualize to the reader what values of β are “plausible” based

on the observed data. The idea being that values inside this confidence interval appear

“plausible,” while values outside of the interval do not. More formally, values outside this

interval are rejected by a standard t-test at level α, while values inside the interval are not

rejected.

Since in this paper a dynamic treatment path is the object of interest, β = {βh}Hh=1 is an

ordered vector instead. We start with a diagram in Online Appendix Figure 1 that illustrates

standard methods in the case of a two dimensional parameter β = (β1, β2) where estimates

are β̂ = (β̂1, β̂2) = (2, 1) and Vβ = I2 is the 2 × 2 identity matrix.

The predominant practice today is to include pointwise confidence intervals in depictions

of estimated treatment effect paths. 100 ∗ (1−α)% pointwise intervals for a specific βh sim-

ply correspond to choosing (ℓh(X), uh(X)) = (β̂h − z1−α/2

√
Vβ[h, h], β̂h + z1−α/2

√
Vβ[h, h])

where Vβ[h, h] is the variance of β̂h and z1−α/2 is the 1 − α/2 quantile of a standard nor-

mal distribution. For example, the pointwise 95% confidence intervals in the case of the

example in Online Appendix Figure 1 for β1 and β2 are respectively 2 ± 1.96 and 1 ±
1.96. Correspondingly, the black square depicts the Cartesian product of these pointwise

confidence intervals for β1 and β2. Denote the region provided by the black square as

CRpw. Treated as a confidence region for (β1, β2), CRpw a) ignores any information in

the off-diagonal entries in the covariance matrix of β̂ and b) is only valid for testing pre-

specified hypotheses involving single coefficients. Thus, it does not achieve correct coverage

for the vector β = (β1, β2): For a chosen significance level α, it will generally be true that

P(β ∈ CRpw) = P(ℓh(X) < βh < uh(X) ∀ h) < (1 − α), such that the black square will

generally cover the true parameter β in less than 100 ∗ (1− α)% of realizations of the data.

For example, if Cov(β̂1, β̂2) = 0, the probability that the pointwise confidence region covers
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Online Appendix Figure 1: Illustration of different confidence regions. Pointwise (black), Sup-t

(red), and Wald (blue) 95% confidence region in two dimensions. β̂ = (2, 1) with covariance matrix

Vβ = I2.

the vector β will be P (β ∈ CRpw) = (1− α)2.

One way to construct a uniformly valid confidence region is to take the Cartesian product

of sup-t confidence intervals (depicted in red) instead. Denote this region CRsup−t. Sup-

t intervals are easy to construct, and simply use a slightly large critical value compared

to pointwise CIs. Specifically, 100 ∗ (1 − α)% sup-t intervals are constructed by choosing(
ℓh(X), uh(X)

)
=
(
β̂h− cα

√
Vβ[h, h], β̂h+ cα

√
Vβ[h, h]

)
where cα is set such that P(ℓh(X) <

βh < uh(X) ∀ h) ≥ (1 − α). For a chosen significance level α, CRsup−t thus achieves valid

coverage, since P(β ∈ CRsup−t) ≥ (1 − α) by construction. For example, the sup-t 95%

confidence intervals in the case of the example in Online Appendix Figure 1 for β1 and

β2 are respectively 2 ± 2.24 and 1 ± 2.24. See, e.g., Freyberger and Rai [2018] and Olea

and Plagborg-Møller [2019] for details about sup-t interval construction as well as further

discussion of different (rectangular) confidence regions. We focus on pointwise and sup-t
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confidence intervals, since these two are the predominant intervals used in practice (e.g.

Callaway and Sant’Anna [2021]; Jordà [2023]; Boxell et al. [2024]).

Finally, the blue circle in Online Appendix Figure 1 corresponds to an alternative con-

fidence region for β, namely the Wald confidence region. Denote this region CRWald. This

region simply collects all parameter values (b1, b2) that are not rejected by a standard Wald

test of the null hypothesis that (β1, β2) = (b1, b2) at level α. For a chosen significance level

α, this region also achieves valid coverage: P(β ∈ CRWald) = (1 − α) by construction. We

note that, in contrast to the pointwise confidence region, both sup-t and Wald confidence

regions depend on the off-diagonal entries in V ar(β̂).
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B Algorithmic Implementation

Recall that the algorithm takes as input jointly normal estimates of the treatment path

β̂ ∼ N(β, Vβ), where Vβ = σ2V , σ2 = 1
H

∑H
h=1 Vβ(h, h), and V is positive-definite. We define

the following object:

β̃(λ1, λ2, K) = argmin
b

Q(b, λ1, λ2, K)

= argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

+λ1 b′D′
1W1(K)D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b
′D′

3W3D3b,︸ ︷︷ ︸
penalty on

third difference

where

� λ1, λ2, K are tuning parameters that determine the surrogate M

� D1 and D3 are the H × (H − 1) and H × (H − 3) first and third difference operators

� V1 = D1V D′
1, V3 = D3V D′

3 are (scaled) variance matrices for first and third differences

� V1(K) is the (H − K) × (H − K) matrix consisting of the lower right entries of V1,

V1(K : H − 1, K : H − 1)

� V̄3 =
1

H−3

∑H−3
h=1 V3(h, h), V̄1(K) = 1

H−K

∑H−1
h=K V1(h, h)

� W1(K) =

(
0(K−1)×(K−1) 0(K−1)×(H−K)

0(H−K)×(K−1) diag(V1(K))/V̄1(K)

)

� W3 = diag(V3)/V̄3

Intuitively, W1(K) and W3 are analogs to natural scaling in standard ridge with independent

columns but different variances.

To select the surrogate M from the data we choose M = (λ1, λ2, K) that minimizes a

BIC analog over M: M̂ = argminM∈M(β̂ − β̃(M)))′V −1
β (β̂ − β̃(M)) + log(H)df(λ1, λ2, K).

The universe of models considered, M, includes

(a) A constant, linear, quadratic, and cubic treatment effect model (with one, two, three,

and four degrees of freedom respectively)
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(b) Surrogates of the form P (M)β = β(λ1, λ2, K) using a grid over (λ1, λ2, K)

(c) the unrestricted estimates β̂ (df = H)

We construct the grid for the surrogates under (b) as follows. First, we set a lower and upper

bound for λ1 and λ2. Independent of K, these bounds are equal to (λ1, λ̄1) = (e−10, e10), and

(λ2, λ̄2) = (e−10, λ̄2), where λ̄2 is defined as the λ2 such that df(e−10, λ2, K) = 4.1 Note that,

with λ1 = 0, λ̄2 also does not depend on K. We then consider the Cartesian product of an

equal spaced grid of 20 points between (log(λ1), log(λ̄1)) and equal spaced grid of 20 points

between (log(λ2), log(λ̄2)), and retain those grid points with df ∈ [4, H − 1].

1Recall that df(λ1, λ2,K) = trace
((

V −1 + λ1D
′
1W1(K)D1 + λ2D

′
3W3D3

)−1
V −1

)
.
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C Simulation Design

Scenario Treatment Path β

Constant Treatment Effect βh = −0.4 ∀ h

Smooth, eventually flat βh =

{
−0.289 + (18−h)2

1000
h ≤ 17

−0.289 h ≥ 18

Hump-shaped βh = −0.4− 0.4 sin

(
3
70
π(h− 1)

)
∀ h

Wiggly

βh = β̆h + ξh, where ξh ∼ N(0, 0.1) iid across h and

β̆h =

 −0.4 sin

(
1
35
π(h− 1)

)
h ≤ 19

−0.4 h ≥ 20

Online Appendix Table 1: Detailed description of the four different treatment paths β = {β}36h=1

considered in the simulations. We draw a single realization of the “Wiggly” scenario (which is

depicted in Figure 3d) to use throughout our simulations.

We generate the covariance matrix of β̂ as Vβ = σ2 ∗ diag(S)R diag(S), where Sh =

(100+ h)/100, and R is a H ×H Toeplitz matrix with Rij = Ri+1,j+1 = ρi−j. For all results

in the main text, we set ρ = 0 (such that R becomes the identity matrix).

8



D Additional simulation results

(a) treatment path constant (b) treatment path smooth, eventually flat

(c) treatment path hump-shaped (d) treatment path wiggly

Online Appendix Figure 2: Exemplary event-study plots including our proposals with smaller

noise than in Figure 2.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 3: Illustration of Model universe M. Brown lines correspond to all

considered models M of the form P (M)β = β(λ1, λ2,K) with df ∈ [4, H−1]. Blue line corresponds

to true treatment effect β.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 4: Chosen df across realizations for restricted estimates as a function

of the amount of noise σ2 in the initial estimates β̂.
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(a) log(σ2) = −4.27 (b) log(σ2) = −5.66

(c) log(σ2) = −7.04 (d) log(σ2) = −8.43

Online Appendix Figure 5: Illustration of 1,000 chosen surrogates for Wiggly DGP for various

levels of σ2, the amount of noise in the initial estimates β̂.
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E Simulation results with positively correlated esti-

mates

In this appendix, we repeat the simulation experiment reported in the main test using a

covariance matrix Vβ capturing positively correlated estimates. In particular, recall that

Vβ = σ2 ∗ diag(S)R diag(S), where Sh = (100 + h)/100, and R is a H ×H Toeplitz matrix

with Rij = Ri+1,j+1 = ρi−j. In the results that follow, we set ρ = 0.8.

(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 6: Relative performance of restricted and unrestricted estimators.

Depicted is the ratio MSE(β̃(M̂))

MSE(β̂)
as a function of the amount of noise in the initial estimates β̂.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 7: Coverage properties of various confidence regions as a function of

the amount of noise in the initial estimates β̂.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 8: Average width of confidence regions relative to pointwise CIs as a

function of the amount of noise in the initial estimates β̂.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Online Appendix Figure 9: Illustration of the 1,000 chosen surrogates for σ2 = 0.014 (log(σ2) =

−4.27) under positive correlation in the point estimates.
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