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José Luis Montiel Olea

Cornell University*

September 30, 2024

Abstract
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1 Introduction

Topic models—statistical models that aim to help uncovering the thematic structure in a collection of
documents—are a simple and popular tool for the analysis of textual data; see Blei & Lafferty (2009), Blei
(2012) for excellent reviews, and Boyd-Graber, Hu, Mimno et al. (2017) for a list of applications. The
model assumes the existence of K latent topics, which are defined as probability distributions over V terms
in a given vocabulary. The model also assumes that each of the D documents is characterized by a topic
distribution; i.e., the share it assigns to each of the K latent topics.

An assumption that has become ubiquitous in this literature is the existence of anchor words (Arora, Ge
& Moitra 2012), which is inspired by the notion of separability used in nonnegative matrix factorization
problems; see Donoho & Stodden (2003) and Arora, Ge, Kannan & Moitra (2012). Broadly speaking,
anchor words are defined as special terms in the vocabulary that are exclusive to each specific topic. It
is well known that the existence of at least one anchor word per topic enables the identification of the
parameters of the topic model.

This paper investigates the extent to which the existence of anchor words in topic models is statistically
testable. There is a long-standing practice in econometrics—going back, at least, to the work on struc-
tural models of Koopmans & Reiersol (1950)—of testing the conditions that enable the identification of
statistical models. The motivation is that if the existence of anchor words is in conflict with the observed
distribution of the data, then such an assumption ought to be dropped or at least relaxed.1 The null hypoth-
esis of interest in this paper is that the observed text data was generated by a topic model that satisfies the
anchor-words assumption; which means that the topic distributions exhibit at least one anchor word per
topic. The alternative hypothesis is that the anchor-words assumption does not hold. We say that the null
hypothesis is testable at significance level α if there exists a test of size at most α and, in addition, the test
has nontrivial power (that is, power larger than the desired significance level, for at least one parameter
value in the alternative hypothesis).

Our first result (Proposition 1) identifies a necessary condition for the statistical testability of the
anchor-words assumption. We define the population term-document frequency matrix, P, as the V × D

column-stochastic matrix whose (v,d)-th entry contains the probability of randomly drawing term v in
document d. Our proposition shows that in order for a statistical test to have nontrivial power there must
exist population term-document frequency matrices—among all of those that can be generated by a topic
model with K topics—that do not admit a separable nonnegative matrix factorization. Our proposition
simply formalizes an obvious observation: we cannot hope to test for the existence of anchor words if ev-
ery population term-document frequency matrix admits a factorization for which its corresponding topic
distributions have at least one anchor word per topic.

Our second result (Theorem 1) provides a characterization of when a column-stochastic matrix with

1It is known that the existence of anchor words is sufficient for identification, but not necessary (Laurberg, Christensen,
Plumbley, Hansen, Jensen et al. (2008), Fu, Huang, Sidiropoulos & Ma (2019)). This means that point identification of topic
models can still be achieved even when this assumption is relaxed; see the recent work of Chen, He, Yang & Liang (2022) that
uses the sufficiently-scattered condition in Huang, Sidiropoulos & Swami (2013) and Huang, Fu & Sidiropoulos (2016). More-
over, even without point identification it is still possible to use the distribution of the data to partially identify the parameters of
the topic model; for example, see Ke, Montiel Olea & Nesbit (2022).
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known nonnegative rank admits a separable factorization. Our theorem—which builds on the seminal work
of Recht, Re, Tropp & Bittorf (2012)—suggests a simple computational procedure to decide whether a
separable nonnegative factorization exists for a given P. This allows us to assess, for example, how likely it
is that a randomly generated population term-document frequency matrix admits a separable factorization
(see, for example, Figure 3a and its description). Using our theorem, we find that for 2 < K < min{V ,D}

the likelihood of such an event is low.2

It is worthwhile to give a brief overview of the characterization result in Theorem 1 and explain its
relation to the literature. Note that for any arbitrary matrix P ∈ RV×D that can be factorized as the product
of two matrices (A,W)—with a factor A ∈ RV×K of rank K—there always exists a matrix C ∈ RV×V

of rank K such that CP = P. Broadly speaking, the previous equation states that there are K rows of P
that can be used to (linearly) generate any of its other rows. When P is a column-stochastic matrix that
admits a separable factorization, it is possible to give more details on the types of linear combinations,
C, that can be used to generate the rows of P. To the best of our knowledge, this observation was first
made by Recht et al. (2012) and Gillis (2013). Our Theorem 1 builds on their results and shows that P has
a separable nonnegative matrix factorization if and only if the linear program suggested by Recht et al.
(2012) to find a nonnegative matrix factorization of separable matrices has a nonempty choice set. More
precisely, Theorem 1 formally shows that P has a separable nonnegative matrix factorization if and only if
there exists a matrix C in the set

CK ≡ { C ∈ RV×V | C ⩾ 0, (1)

tr (C) = K,

cjj ⩽ 1, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V},

that satisfies the equation
CProw = Prow, (2)

where Prow is the row-normalized version of P.
The set CK is the set of all nonnegative matrices of dimension V × V that have elements in [0, 1],

have trace equal to K, and have the property that the “sup-norm” of every column j is bounded by its j-th
diagonal value. The set of all matrices C that satisfy (1) and (2) can be thought of as all rank-K convex
combinations of the rows of Prow. Theorem 1 thus suggests that a reasonable test statistic for testing the

2The fact that not all nonnegative matrices of nonnegative rank K have a separable factorization with K topics should not be
surprising, given well-known results in the computer science literature about the complexity of nonnegative matrix factorization.
For instance, Vavasis (2010) has shown that the exact nonnegative matrix factorization problem is NP-hard. It is also known
that finding a separable factorization (when such a factorization exists) can be done in polynomial time in (V,D,K); see Arora,
Ge, Kannan & Moitra (2012). If every nonnegative matrix with nonnegative rank of K admitted a separable factorization, then
the two previous results together would imply that the exact nonnegative matrix factorization problem is both P and NP-hard.
Under the P ̸= NP hypothesis, an NP-hard problem cannot be in P.
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anchor-words assumption given a text corpus Y is

T(Y) ≡ inf
C∈CK

∥CP̂row − P̂row∥, (3)

where P̂row is a suitable estimator of the matrix Prow, and ∥ · ∥ is some matrix norm (which we will take,
throughout the paper, to be the Frobenius norm).

Our third result (Theorem 2) shows that, under some high-level conditions, there exists a test of signif-
icance level α based on the test statistic (3) which has nontrivial power. Our proof is constructive, and the
test we suggest rejects the anchor-words assumption whenever T(Y) is large. To guarantee that the test has
size at most α, we rely on a critical value that is chosen to be equal to the “worst-case” (1 − α)-quantile
of T(Y), which we denote as q∗

1−α. By “worst-case” we mean the largest quantile among all those that
could be obtained using a distribution for word counts generated by a model that satisfies the anchor-words
assumption.

While the validity of the suggested test holds by construction, the analysis of the test’s power is more
delicate. For intuition, first note that by the reverse triangle inequality,3

T(Y) ⩾ inf
C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − Prow)∥. (4)

This means that the power of the test is lower-bounded by the probability of the event

inf
C∈CK

∥(C− IV)(AW)row∥ ⩾ sup
C∈CK

∥(C− IV)(P̂row − Prow)∥+ q∗
1−α. (5)

If P does not admit a separable factorization, the left-hand side of (5) is strictly positive by Theorem 1.
Further, if the estimator P̂row is close enough to Prow with high probability—regardless of whether the
anchor-words assumption holds—then both terms on the right-hand side of (5) will be small. Thus, one
would expect (5) to hold with high probability at any point (A,W) for which the matrix P = AW does
not have an anchor-word factorization.

Although Theorem 2 shows that the test that rejects the null whenever “T(Y) > q∗
1−α” has correct size

and nontrivial power, obtaining q∗
1−α is computationally infeasible. To address this issue, in Section 4.2.2

we derive a computationally tractable “bootstrap” upper bound for the critical value that allows us to test
for the existence of anchor words in realistic applications.

Finally, in order to illustrate the applicability of our theoretical results, we analyze the transcripts of
the meetings of the Federal Open Market Committee (FOMC), the main body within the Federal Reserve
System in charge of setting monetary policy in the United States. We focus on the FOMC transcripts
during the “Greenspan period,” the meetings in which Alan Greenspan was chairman. We separate each
transcript into two parts: the discussion of domestic and international economic conditions (FOMC1) and
the discussion of the monetary policy strategy (FOMC2). This gives us two different corpora to analyze.4

3Here and throughout, IH denotes the identity matrix of size H.
4See Chappell Jr, McGregor & Vermilyea (2004), Meade & Stasavage (2008), Meade & Thornton (2012), Hansen, McMa-

hon & Prat (2018) for other studies using the FOMC transcript data.
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The first corpus (FOMC1) allows us to illustrate the potential benefits of assuming the existence of
anchor words in a concrete empirical application. Aside from the computational tractability and the the-
oretical identification results that become available under the anchor-words assumption, the estimated
anchor words can potentially provide natural and objective labels for the estimated topics. We think this is
an important point, as it has recently been argued that an inherent challenge of topic models in empirical
applications is that they “do not generate objective topic labels” and that “A given topic consists of many

words, and words are scattered across many topics, so the outputs are often difficult to interpret.”; see the
discussion in Section 3.2.2.1 of Ash & Hansen (2023). In contrast, as we explain in detail in Section 5, the
anchor words for FOMC1 are all readily interpretable (see Figure 8 and the discussion in Section 5.2.2).
Moreover, the estimated topic proportions for the FOMC1 corpus seem to be consistent with historical
events that shaped monetary policy decisions during the Greenspan period. In line with these results,
when we apply our suggested testing procedure to this corpus, we indeed find that a nominal 5%-level test
fails to reject the null hypothesis of anchor words for the FOMC1 corpus.

The results for the FOMC2 corpus are different. As we explain in Sections 5.2.2 and 5.2.3, the anchor
words and the estimated topics for FOMC2 are difficult to interpret. Also, with the exception of two
topics, it is difficult to provide a rationale for the historical evolution of the topic shares. Even without
a formal statistical test, this suggests that the distribution of the data might not be compatible with the
existence of anchor words, even if the topic model is assumed to be correctly specified. We then apply
our suggested testing procedure to this corpus and indeed find that a nominal 5%-level rejects the anchor-
words assumption for the FOMC2 corpus.

Our paper also adds to the wider body of research on the practical and theoretical development of
modern language models, where topic models play an important role. Although we focus on classical
topic models, there are a number of papers combining topic modeling with other recent developments in
the analysis of textual data, such as contextual vector representations of text. See, for example, Das, Zaheer
& Dyer (2015) Angelov (2020) Dieng, Ruiz & Blei (2020), Zhao, Dinh Phung, Jin, Du & Buntine (2021)
and Abdelrazek, Eid, Gawish, Medhat & Hassan (2023). There is also recent work trying to establish
connections between topic models and large language models; for example, Wang, Zhu, Saxon, Steyvers
& Wang (2024) and Xie, Raghunathan, Liang & Ma (2022) and Wang et al. (2024). Finally, we note that
topic models have been helpful in understanding the limitations of incorporating unsupervised learning in
the typical econometrics pipeline. See the recent work of Battaglia, Christensen, Hansen & Sacher (2024)
on inference for regression models with variables generated from unstructured data.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 presents the
main theoretical results. This section also shows that when K = 2 the anchor-words assumption is not
statistically testable, but gives concrete examples of statistical testability when K = 3. Section 4 presents
numerical results. Section 5 presents the empirical application. Section 6 concludes.
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2 Model

2.1 Notation

We observe documents d = 1, . . . ,D, based on a dictionary of v = 1, . . . ,V terms. There is a V × K

column-stochastic matrix, A, whose columns represent a probability distribution over the V terms that
constitute the dictionary.5 We refer to each of the columns of A as a topic, and to A as the term-topic

matrix. There is also a K ×D column-stochastic matrix, W, collecting the probabilities that a document
covers a particular topic k = 1, . . . ,K. We refer to W as topic-document matrix. We assume that K ⩽

min{V ,D}.
It will be convenient to have specific notation to denote the v-th row, the k-th column, and the (v,k)-th

entry of A. We will use Av•,A•k and avk respectively. We use analogous notation for W and any other
matrix. Further, for an arbitrary matrix B, we use RB to denote the diagonal matrix that contains the row
sums of B, and use Brow to denote the “row-normalized” version of a matrix B. That is, Brow = R−1

B B.
We assume that the probability of a term v appearing in a given entry of document d, pvd, is given by

pvd =

K∑
k=1

P(Term v|Topic k)Pd(Topic k) =

K∑
k=1

avkwkd. (6)

Thus, the V ×D matrix P defined by

P
(V×D)

= A
(V×K)

W
(K×D)

, (7)

collects the terms pvd. We will refer to P as the population term-document frequency matrix. Throughout,
we maintain the assumption that both A and W are full rank and that the rows of A and P are all different
from zero.6 We further assume that the number of topics K is known and fixed.

2.2 Statistical model

The observed data consist of the number of times each term v appears in a specific document d. Denote
these counts by the V ×D matrix Y. Let Nd be the total number of words in document d, and Nmin ≡
min{N1, . . . ,ND}. Following the literature (e.g. Hofmann (1999)), we assume that for each document d

Y•d|(A,W) ∼ Multinomial (Nd,AW•d) . (8)

We maintain throughout that the vectors of counts Y•d are independent across documents, conditional on
(A,W).

It is well known that the parameters (A,W) in the statistical model (8) are not identified. This follows

5A matrix A ∈ RV×K is column stochastic if its columns are probability distributions over RV . See p. 253 of Doeblin &
Cohn (1993) for a definition.

6Note that, if there exists a term v with ∥Av•∥0 = 0, this term is not used in any document. Removing any unused terms
from the dictionary and rewriting (7) using the smaller vocabulary V ′ immediately implies that ∥Av•∥0 ̸= 0 ∀v ∈ V ′.
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from the fact that any pair of parameters (A,W) ̸= (Ã, W̃) such that AW = ÃW̃ will induce the same
probability distribution over the data. In general, the culprit for the lack of identification is the multiplicity
of solutions for the nonnegative matrix factorization problem defined by Equation (7); see Donoho &
Stodden (2003), Fu et al. (2019).

The lack of identification poses statistical and computational challenges to the estimation of the pa-
rameters of the multinomial model in Equation (8). A common approach in the literature to circumvent
these issues is to posit the existence of anchor words (Arora, Ge & Moitra (2012), Ke & Wang (2022),
Bing, Bunea & Wegkamp (2020a)). A term v(k) in the vocabulary is an anchor word for topic k if such
a term only has positive probability under topic k; that is Av(k)k > 0 and Av(k)k̃ = 0 for k̃ ̸= k. More
formally:

Definition 1. A column stochastic, rank K matrix A ∈ RV×K is said to have anchor words if there exists

a row permutation matrix Π such that

ΠA =

[
D

M

]
, (9)

where D ∈ RK×K is a diagonal nonnegative matrix.

Since only the parameter P = AW is identified in the multinomial model (8), it will be convenient to
have an explicit definition of what it means to say that P admits a nonnegative matrix factorization with

anchor words:

Definition 2. A column stochastic matrix P ∈ RV×D with nonnegative rank K is said to have a rank K,

anchor-word (or separable) factorization if P can be written as

P = AW,

where A ∈ RV×K is some matrix that satisfies Definition 1, and W is a K×D column stochastic matrix.

A proof that the anchor-word assumption suffices for statistical identification follows from Theorem
4.37 in Gillis (2020), see Chapter 4, p. 135. The notion of statistical identification that allows us to
immediately use results in the nonnegative matrix factorization literature assumes (V ,D,k) are fixed.
Then, one can simply show that—up to label switching of the topics—two pairs of matrices (A,W) that
satisfy the anchor-word assumption imply different distributions for the data under the model in (8). This
is the standard definition of identification for parametric models in a finite sample; see Ferguson (1967),
p. 144.

2.3 The existence of anchor words as a statistical hypothesis

The goal of this paper is to analyze the extent to which the existence of anchor words is statistically
testable. As we mentioned in the introduction, testing the conditions that enable the identification of
statistical models has a long history in econometrics. Below we give a formal statement of our goal.
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Let Θ denote the parameter space of the multinomial model in Equation (8). The parameter space
refers to the collection of matrices (A,W) defined in (6)-(7) that could have generated the data. Define
the “null set” Θ0 as:

Θ0 ≡ {(A,W) ∈ Θ |A has anchor words as defined by Definition 1}. (10)

The statistical hypothesis testing problem of interest is

H0 : (A,W) ∈ Θ0 vs. H1 : (A,W) ∈ Θ1 ≡ Θ\Θ0. (11)

Let Y denote the space of all possible data realizations according to the model in Equation (8). As
usual, define a statistical test for the hypothesis testing problem in (11) as a function ϕ : Y → [0, 1], where
ϕ(Y) is interpreted as the probability of rejecting the null hypothesis when the observed data is the count
matrix Y.

Definition 3. The statistical hypothesis H0 is testable at significance level α if there exists a test ϕ such

that

sup
(A,W)∈Θ0

E(A,W)

[
ϕ(Y)

]
⩽ α, (12)

and if there exists a parameter (A,W) ∈ Θ1 ≡ Θ\Θ0 such that

E(A,W)

[
ϕ(Y)

]
> α. (13)

As usual, we refer to any test satisfying (12) as a valid test of significance level α. Also, for any
(A,W) ∈ Θ1 we refer to E(A,W)

[
ϕ(Y)

]
as the power of the test ϕ at the parameter value (A,W). Thus,

Definition 3 says that the statistical hypothesis H0 is testable if there exists a statistical test with correct
size and with nontrivial power; that is, power larger than the desired significance level at least at one
parameter value in the alternative hypothesis Θ1.

The following simple proposition connects the statistical testability of H0 to the existence of anchor-
word factorizations of the population term-document frequency matrix, P.

Proposition 1. Let (A,W) be a parameter vector such that A does not have anchor words according to

Definition 1; i.e., (A,W) ∈ Θ1. If the matrix P ≡ AW has an anchor-word factorization—in the sense of

Definition 2—then any valid test of significance level α for the hypothesis H0 has power of at most α at

(A,W).

Proof. According to the statistical model in (8), the distribution of Y depends on the parameter (A,W)

only through P ≡ AW. If P has an anchor-word factorization, then—by Definition 2—there exists
(Ã, W̃) ∈ Θ0 for which AW = P = ÃW̃. Therefore, the power of any valid test ϕ of significance
level α at (A,W) satisfies:

E(A,W)

[
ϕ(Y)

]
= EAW

[
ϕ(Y)

]
= EÃW̃

[
ϕ(Y)

]
⩽ α, (14)
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where the last inequality follows because (Ã, W̃) ∈ Θ0.

The elementary result stated in Proposition 1 formalizes the observation that if any given matrix P with
nonnegative rank K were to admit an anchor-word factorization, then any statistical test ϕ of significance
level α for the hypothesis H0 would be trivial, in the sense that its power against any alternative (A,W) ∈
Θ1 is at most α. According to Definition 3 above, this makes the hypothesis H0 untestable. Consequently,
Proposition 1 implies that a necessary condition for the testability of the anchor-words assumption is that
not all matrices P with nonnegative rank K admit an anchor-word factorization.

A more abstract way to think about Proposition 1 is by imagining the topological structure of the null
hypothesis relative to whole parameter space. For instance, it is known that if a matrix P = AW for
(A,W) ∈ Θ1 can be approximated arbitrarily well (in total variation distance) by elements in the set of
distributions satisfying the null hypothesis (i.e., P is on the “topological boundary” of the null set), then,
by continuity, the rejection probability of the test at such P must be no larger than the size of the test; see
Lemma 2.1 in Canay, Santos & Shaikh (2013). When the matrix P = AW for (A,W) ∈ Θ1 has an anchor-
word factorization, then that means there is a (A0,W0) ∈ Θ0 for which P = A0W0. This means that the
total variation distance between the induced data distributions for parameters (A,W) and (A0,W0) has to
be zero. We return to this topological interpretation in the next section to argue that there are matrices P
that do not admit an anchor-word factorization, and that those matrices are not on the boundary of the null
set (see Remark 5, after Theorem 1).

3 Main Theoretical Results

3.1 When does P admit an anchor-word factorization?

According to Proposition 1, a necessary step to assess the testability of the anchor-words assumption is
to understand whether all column-stochastic matrices P with nonnegative rank K admit an anchor-word
factorization. Theorem 1 below sheds light on this issue.

Before presenting our result, we provide a brief algebraic illustration of the thought process that led to
it. Note first that for any arbitrary matrix P ∈ RV×D that can be factorized as the product of two matrices
(A,W)—with a factor A ∈ RV×K of rank K—there exists a matrix C ∈ RV×V such that

CP = P, (15)

where C is also of rank K. Broadly speaking, the equation above says that there are K rows of P that can
be used to generate any of its other rows by means of linear combinations. For example, assume w.l.o.g.
that the first K rows of A, denoted A0, are full rank. Then, we may write

P =

[
A0W

A1W

]
, and thus C =

[
IK 0K×(V−K)

A1A
−1
0 0(V−K)×K

]
satisfies Equation (15).

When P is a column-stochastic matrix that admits an anchor-word factorization, it is possible to give

8



more details on the types of linear combinations, C, that can be used to generate the rows of P. To the best
of our knowledge, this interesting observation was first made by Recht et al. (2012) and Gillis (2013).

To illustrate this point, suppose that A0 is not just full rank, but diagonal (such that A has anchor words
by Definition 1):

P = A∗W∗ =

[
A0W

∗

A1W
∗

]
=

[
DW∗

MW∗

]
,

where D is diagonal. With D diagonal, we can rewrite

A1A
−1
0 = MD−1 = RMW∗(RMW∗)−1MRW∗(RDW∗)−1 (16)

and all entries in A1A
−1
0 are nonnegative. Thus, the matrix C̃ defined as

C̃ ≡ RPCR
−1
P , where C ≡

[
IK 0K×(V−K)

(RMW∗)−1MRW∗ 0(V−K)×K

]
, (17)

satisfies Equation (15). In particular, algebra shows that the matrix C in Equation (17) belongs to the set

CK ≡ { C ∈ RV×V | C ⩾ 0,

tr (C) = K,

cjj ⩽ 1, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(18)

The set CK is the set of all nonnegative matrices of dimension V ×V that have diagonal elements in [0, 1],
have trace equal to K, and have the property that the “sup-norm” of every column j is bounded by its j-th
diagonal value (which is reminiscent, but weaker, than the presence of a dominant diagonal).

Since C̃P = P, it follows that the matrix C in Equation (17) satisfies

CProw = Prow. (19)

The following theorem shows that the existence of an anchor-word factorization is characterized by the
existence of a matrix C ∈ CK that satisfies Equation (19).

Theorem 1. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits a rank

K anchor-word factorization—in the sense of Definition 2—if and only if

CK(P) ≡ CK ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅. (20)

Proof. See Section A.1 of the Appendix.

Remark 1. The set of matrices CK(P) in Equation (20) can be viewed as the choice set of a linear program,
where the objective function could be any arbitrary linear functional of C. To the best of our knowledge,

9



this set was first studied by Recht et al. (2012), who use the linear program:

min
C∈CK(P)

b ′diag(C) (21)

(where b is any vector with distinct, non-zero entries) to factor a separable nonnegative matrix with known,
nonnegative rank K. Theorem 1 shows that checking whether a column-stochastic matrix P with nonnega-
tive rank K admits a rank K anchor-word factorization is equivalent to checking whether the linear program
(21) has a nonempty choice set.

Remark 2. An anchor-word factorization always exists when K = 2. This follows from Remark 2.2 in
Gillis (2020), Chapter 2.1, p. 27.7 We first use a simple geometric argument to explain the intuition behind
this result. Consider a simple low-dimensional example where V = 4 and K = 2 (i.e., there are four words
and only two topics). This example is depicted in Figure 1 below. Each column of the matrix P, which
contains the probabilities assigned to each word in each document, can then be depicted in a tetrahedron
representing the simplex in R4. The topics themselves (the columns of A) also correspond to a set of
probabilities over the four words; thus they can also be represented by points inside the simplex. Further,
because the documents are a mixture of two topics (P = AW), all documents will lie on the ray (depicted
as a black solid line) that is spanned by the two topics, and in fact fall inside the convex hull of the two
topics. Intuitively, when K = 2, we can always find an anchor-word factorization by intersecting the ray
with the faces of the tetrahedron. This intersection is depicted by the red filled circles in the figure. It is
easy to see that any matrix A with columns belonging to different faces of the tetrahedron will have the
anchor-word structure.

In Section A.3 of the Online Supplementary Material, we complement our geometric arguments with
an analytical derivation that uses Theorem 1 to constructively show that when K = 2 ⩽ min{V ,D}, any

nonnegative matrix P of rank two (and whose rows are different from zero) admits an anchor-word fac-
torization. Our verification of Theorem 1 explicitly constructs a matrix C ∈ C2(P) that satisfies Equation
(20).

Remark 3. Even in simple low-dimensional problems, an anchor-word factorization need not exist (again,
see Remark 2.2 in Gillis (2020)). We illustrate this result using an intuitive geometric argument similar to
the one discussed above (with V = 4) that illustrates why an anchor-word factorization frequently does
not exist when K = 3, and to explain the differences vis-à-vis the case in which K = 2.

With four words (V = 4) and three topics (K = 3), we can still depict the columns of P in the
tetrahedron we used in Figure 1. Further, because the documents are now a mixture of three topics, all
documents will lie on the plane that is spanned by the three topics. This is illustrated in Figure 2.

7If P⊤ ∈ RV×D has rank 2, then Remark 2.2 in Gillis (2020) implies there exists a nonnegative matrix factorization of P⊤

of the form P⊤ = M1M2 such that M1 ∈ RD×2 equals two of the columns of P⊤ (say columns i and j) and M2([i, j], :) = I2.
This means there exists a row permutation matrix, Π, and a matrix M ∈ RV−1×2 such that

ΠP =

[
I2
M

][
Pi,•
Pj,•

]
.

After row-normalizing each of these factors we obtain an anchor-word factorization of P.

10



Figure 1: Graphical representation of a topic model with V = 4 and K = 2 using the simplex in R4. The vertices of
the simplex represent the four words. The solid black line represents the ray spanned by the columns of the matrix
P, which is assumed to have rank K = 2. The red filled circles in the intersection of the ray with the faces of the
tetrahedron are the columns of a matrix A with two anchor words.

(a) Case I (b) Case II

Figure 2: Graphical representation of a topic model with V = 4 and K = 3 using the simplex in R4. The plane
represents the space spanned by the columns of the matrix P, which is assumed to have rank K = 3. The red filled
circles are the intersection of the plane with the edges of the tetrahedron.

We first note that if an anchor-word factorization exists, the topics must lie on the edges (the one-
dimensional faces) of the tetrahedron. The reason is that a necessary condition for A to have anchor words
is that all three topics are associated with at most two words (the word-topic matrix must have at least two
zeros in each column).

We next note that a plane intersecting a tetrahedron will, in general, either intersect three or four of its
edges. In case I (Figure 2a), the space spanned by the topics intersects three edges of the word simplex.
In this case, those three edges necessarily share a common vertex. That means that the word associated
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with that vertex has non-zero probability under all three topics. But since the word-topic matrix has two
zeros in each column, it then immediately follows that the three solid red circles provide an anchor-word
factorization of P.

In case II (Figure 2b), the space spanned by the topics intersects four edges of the word simplex. No
matter which three out of these four circles one selects as the columns of A, each row has at least one
entry equal to zero. Thus, up to a row permutation,

A =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 ,

for α,β,γ ∈ (0, 1), and A does not have anchor words. Further, we can show using Theorem 1 that any
P of the form above does not have an anchor-word factorization; see Section A.4 of the Online Supple-
mentary Material. In Section 4 we also provide numerical evidence suggesting that the probability that
randomly sampled matrices P with a nonnegative rank K with 2 < K < min{V ,D} admit an anchor-word
factorization could be very low.

Figure 2 is also helpful to illustrate what happens when the anchor-words assumption is erroneously
imposed (and the model misspecified). Suppose P does not have an anchor-word factorization and the
documents lie on the plane depicted in Case II (Figure 2b), but we estimate A under the anchor-words
assumption. This restricts the set of word-topic matrics A to those that span planes which only intersect
the tetrahedron at three vertices (cf. Figure 2a). Figure 2 suggests that this can lead to both misleading
interpretation of the topics and a substantially poorer model fit.8

Remark 4. We show in Section A.4 of the Appendix that for any matrix norm Theorem 1 is equivalent to
saying that a column-stochastic matrix P with nonnegative rank K admits a rank K anchor-word factoriza-
tion if and only if

min
C∈CK

∥CProw − Prow∥ = 0. (22)

We use this simple observation to construct a statistical test for the null hypothesis of anchor words. For
the remainder of the paper we let ∥ · ∥ denote the Frobenius norm.

Remark 5. While Theorem 1 shows that some column-stochastic matrices with nonnegative rank K do
not have an anchor-word factorization, this is not yet sufficient to establish the statistical testability of the
anchor-words assumption. For instance, if every matrix P that does not have an anchor-word factorization
could be approximated by a sequence of matrices with an anchor-word factorization, then Lemma 2.1 in
Canay et al. (2013) would imply that the power of any test of size α must also be at most α at any such P.
However, intuitively, continuity of the norm in Equation (22) can be used to show that whenever P does
not have an anchor-word factorization, there is no sequence of matrices with an anchor-word factorization
that converges (in total variation norm) to P (see Section A.1 of the Online Supplementary Material for a
formal derivation). This shows that the matrices P that do not have an anchor-word factorization belong,

8We illustrate this further numerically in Section B.2 of the Online Supplementary Material.
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in a sense, to the topological interior (with respect to the total variation norm) of Θ1.

Final Comment on Theorem 1. We first encountered the connection between the set CK(P) and the anchor-
word factorization of P in the work of Recht et al. (2012). In particular, their Theorem 3.1 on p. 4 can
be viewed, mutatis mutandi, as showing that if an anchor-word factorization of P exists, then CK(P) is
nonempty.

We extend the results in Recht et al. (2012) in two ways. First, we show constructively that it is
possible for the set CK(P) to be empty for some matrices P that have nonnegative rank K, provided 2 <

K < min{V ,D}. Second, we establish the reverse direction: if CK(P) is nonempty, then an anchor-word
factorization of P exists. In other words, we show that not every matrix P has an anchor-word factorization,
and that the matrices P for which CK(P) is empty are precisely those for which there is no anchor-word
factorization.

To prove Theorem 1 we establish that—up to a permutation matrix—the construction given in our
illustrative example of Equation (17) is possible if and only if P has an anchor-word factorization (see
Lemma 1 in Section A.1 of the Appendix). One direction of this Lemma is implicitly used by Recht et al.
(2012) in the introduction of their hottopixxx algorithm (see their definition of a factorization localizing
matrix) and is also stated in Equation 1.1 of Gillis (2013). We formally derive this result and its reverse
direction in Lemma 1.

3.2 Testing the existence of anchor words

Let P̂row denote some estimator of the matrix Prow based on the available data Y. Consider the test statistic
T(Y) defined as

T(Y) ≡ inf
C∈CK

∥CP̂row − P̂row∥. (23)

In Section A.2 of the Online Supplementary Material we show that when ∥ · ∥ is the Frobenius norm, this
“inf” is attained for any P̂row, and thus can be replaced by a “min”. Define ND = (N1, . . . ,ND) to be
the vector collecting the total number of words per document. Let q1−α(AW,V ,D,K,ND) denote the
1 − α quantile of the test statistic T(·) assuming that the data was generated by the multinomial model in
Equation (8) with parameters (A,W). Since the distribution of the data used to estimate Prow only depends
on the paramaters (A,W) through AW, then the quantiles of T only depend on the parameters through
the same product. Consider then the critical value

q∗
1−α(V ,D,K,ND) ≡ sup

(A,W)∈Θ0

q1−α(AW,V ,D,K,ND), (24)

and define the test:

ϕ∗(Y) ≡

{
1 if T(Y) > q∗

1−α(V ,D,K,ND),

0 otherwise.
(25)

The next theorem shows the test in (25) has significance level α for any possible configuration (V ,D,K,ND)
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of the multinomial model in Equation (8). It also gives a high-level sufficient condition under which the
test has nontrivial power.

Theorem 2. The test ϕ∗ has significance level α; i.e.,

sup
(A,W)∈Θ0

E(A,W)

[
ϕ∗(Y)

]
⩽ α. (26)

Moreover, suppose there is a parameter value (A,W) ∈ Θ1 for which

P(A,W)

(
inf

C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − (AW)row)∥

> q∗
1−α(V ,D,K,ND)

) (27)

exceeds α. Then for such (A,W) ∈ Θ1 we have

E(A,W)

[
ϕ∗(Y)

]
> α.

Proof. We first establish (26). For any (A,W) ∈ Θ0

E(A,W)

[
ϕ∗(Y)

]
= P(A,W)

(
ϕ∗(Y) = 1

)
= P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q∗
1−α(V ,D,K,ND)

)
⩽ P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q1−α(AW,V ,D,K,ND)

)
= α,

where the last two lines follow from the definition of q∗
1−α. Thus, ϕ∗ has size of at most α, regardless of

the model’s configuration (V ,D,K,ND).
Now we analyze power. The power of the test ϕ∗ at (A,W) ∈ Θ1 is given by

P(A,W)

(
min
C∈CK

∥CP̂row − P̂row∥ > q∗
1−α(V ,D,K,ND)

)
.

Since ∥ · ∥ satisfies the reverse triangle inequality, then

min
C∈CK

∥CP̂row − P̂row∥ ⩾ inf
C∈CK

∥(C− IV)(AW)row∥− sup
C∈CK

∥(C− IV)(P̂row − Prow)∥.

This means that the power of the test ϕ∗(Y) at any parameter values (A,W) ∈ Θ1 that satisfies Equation
(27) is at least α.

The nontrivial power of the test ϕ∗ in Theorem 2 is obtained under the high-level assumption in (27),
which involves the following three terms:

i) infC∈CK
∥(C− IV)(AW)row∥,
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ii) supC∈CK
∥(C− IV)(P̂row − (AW)row)∥,

iii) q∗
1−α(V ,D,K,ND).

Intuitively, the high-level assumption in (27) requires the term in i) to be larger than the terms ii)-iii), with
probability at least α.

In Section A.2 of the Appendix we verify the high-level assumption in Theorem 2 for the estimator
P̂row

freq: the row-normalized version of the relative frequency counts, P̂freq ≡ nv,d/Nd. In particular, we
show that, under a weak regularity condition, if Nmin ≡ min{N1, . . .ND} is large enough, the high-level
assumption used in Theorem 2 holds at any point (A,W) ∈ Θ1 such that P = AW does not have
an anchor-word factorization. In fact, we show in Corollary 1 in Section A.2 of the Appendix that the
probability of the event in (27) (and thus the power of the test) will be arbitrarily close to one, ensuring
consistency of the test at any point in the alternative for which the anchor-word factorization does not
exist.

4 Numerical Results

We next present numerical results to accompany our theoretical analysis in the previous section. First,
we use Theorem 1 to study how likely it is to draw a matrix P that has an anchor-word factorization for
different values of (V ,K,D). Then, we illustrate Theorem 2 by showing finite sample results for a version
of our test that uses a “bootstrap bound” for the critical value.

4.1 Known P

The goal of this section is to understand how likely it is for a randomly generated matrix of the form
P = AW to admit an anchor-word factorization for a variety of combinations of (V ,K,D). To do this,
we randomly generate column-stochastic matrices (A,W) ∈ RV×K × RK×D. For each realization, we
then use a linear program—as the one that appears in Equation (21) in Remark 1—to check whether the
set CK(P) in Equation (20) is empty or not. We then report the fraction of randomly generated matrices
for which the set CK(P) turned out to be nonempty. By Theorem 1 this is equivalent to the fraction the
sampled P that has an anchor-word factorization.

The results of this exercise are depicted in Figure 3, where we fix D = 1000 and vary K ∈ {2, 3, 4}

and V ∈ {4, 10, 100}. Figure 3a corresponds to the case in which the columns of A and W are sampled
from independent Dirichlet distributions with concentration parameters α equal to 1 and 0.01 respectively.
Note that, by construction, the probability of creating a matrix A that has anchor words is zero under this
data generating process (“DGP”). We therefore refer to this data generating process for P as “No anchor
words”. Figure 3b reports results for (A,W) generated as in our “No anchor words” simulation, but with
all off-diagonal entries in the first K rows of A replaced with zeros before re-normalizing the columns of
A to sum to one. This ensures that under this DGP the resulting word-topic matrix A has anchor words.
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We refer to this data generating process as “With anchor words”.9

In both figures, we are reporting the fraction of simulations in which P has an anchor-word factoriza-
tion, with yellow indicating an anchor factorization exists in all realizations. A blue square for a given
combination of K and V indicates that P does not have an anchor factorization in any of its realizations.

(a) No anchor words (b) With anchor words

Figure 3: Fraction of randomly generated matrices P = AW with an anchor-word factorization for different con-
figurations of (V,K) and D = 1000. Figure based on 500 simulations.

The numerical results are in line with the theoretical results discussed in Section 3. According to
Remark 2 any P with rank K = 2 admits an anchor-word factorization. Similarly, when K = V any matrix
P = AW admits an anchor-word factorization. This is reflected by the yellow square in the bottom left
of both panels. Next, we see that for K = 3 and V = 4 some realizations of (A,W) allow an anchor-
word factorization, while others do not (cf. Figure 2). Given our geometric interpretation in Figure 2,
the probability of not having an anchor-word factorization is equal to the probability that the hyperplane
associated to P cuts the simplex as in Figure 2b. In this case, it is possible to show that the probability
of this event can be related (but is different) to Sylvester’s four point problem (see Gillis (2020), p.62;
the connection between the nonnegative matrix factorization problem and the Nested Polytope problem
in Theorem 2.11 of Gillis (2020); and the sampling scheme suggested in Section 3.3.2 in Gillis (2020)).
In the more general case (K > 2, and V ∈ {10, 100}), we find that there does not exist an anchor-word
factorization in most realizations (Figure 3a), unless we explicitly impose this structure on A (Figure 3b).

In Section B.1 of the Online Supplementary Material, we study the effects of introducing varying
degrees of sparsity in the word-topic matrix A on the likelihood that a randomly generated population
term-document frequency matrix admits an anchor-word factorization. We find that, as the amount of
sparsity in A increases, this becomes more likely.

9We disregard P in the rare case that we obtain a word in the vocabulary that is used extremely infrequently and satisfies∑
d pvd ⩽ 0.03 to avoid numerical issues in the row-normalization step (cf. Corollary 1 in Section A.2 of the Appendix).
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4.2 Unknown P

In this section we conduct small scale simulations to analyze the case in which P is unknown and we
observe count data generated by the multinomial model in (8). In this case, we use the count data to test
for the existence of anchor words. Before presenting the results, we provide details on the construction of
the test statistic and the critical value that are used in this section.

4.2.1 Test statistic

We compute the test statistic T(Y) in Equation (23) as

T(Y) ≡ min
C∈CK

∥CP̂row
freq − P̂row

freq∥F,

where ∥ · ∥F denotes the Frobenius norm and P̂row
freq denotes the row-normalized term-document frequency

matrix. The (v,d)-entry of P̂row
freq is

(
nv,d/Nd

)/ D∑
d=1

(
nv,d/Nd

)
.

Two remarks are in order. First, as discussed after the statement of Theorem 2, the test statistic T(Y)

could have been computed using a different estimator for the row-normalized population term-document
frequency matrix. We use the simple row-normalized term-document frequency matrix because i) it is
straightforward to implement, and ii) the uniform rates of estimation error reported in Proposition 2 (in
particular, Equation 51) suggest good performance relative to the other estimators we analyzed. See
Section (A.6) of the Online Supplementary Material for the statistical properties of alternative estimators
of Prow.

Second, the computation of the test statistic T(Y) involves the minimization of a quadratic objective
function over the set CK, which is a set of bounded, real-valued V×V matrices defined by 1 linear equality
and 2V2 linear inequalities. We solve this optimization problem in MATLAB® (version 2022b) using the
function lsqlin.10

4.2.2 Critical values

The test we presented in Theorem 2 uses the largest 1 − α quantile of the distribution of the test statistic
T(Y) that can be generated by matrices (A,W) that satisfy the null hypothesis. This critical value is

10The lsqlin function minimizes an objective function of the form f(x) ≡ ∥Cx− d∥2 (where x is a vector in Rn and C is
a matrix of dimension m×n and d is a vector of dimension m× 1) subject to a set of linear equalities and inequalities. To use
this function for our problem we vectorize the equation CP̂row

freq − P̂row
freq as

(ID ⊗ P̂row⊤
freq )vec(C) − vec(P̂row

freq),

and treat the choice variable x as vec(C). For reference, the computation of the test statistic takes only 137 and 58 seconds
respectively for the two corpora we consider in the application in Section 5.
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defined formally in Equation (24) and, in a slight abuse of notation, throughout this section we simply
denote it as q∗

1−α.
Theorem 2 shows that the test that rejects whenever the test statistic, T(Y), exceeds q∗

1−α has correct
size and nontrivial power. Although this test is useful to establish the testability of the anchor-words
assumption, obtaining q∗

1−α in our application is extremely computationally demanding. For instance,
one could try to create either a deterministic or random grid of parameters (A,W) in Θ0, and approximate
q∗
1−α from below by the largest quantile for the random variable T(Y) over the grid. This will require

constructing a deterministic (or random) grid over matrices of dimension V×D and K×V that satisfy the
anchor-words assumption. Due to the dimension of the parameter space, it seems unlikely that one could
generate a good approximation of q∗

1−α using this approach. Below, we describe two computationally
feasible approaches to obtain a bound on q∗

1−α.
• Algebraic upper bound for q∗

1−α. Lemma 4 in Section A.5 of the Online Supplementary Material
implies that, under the same assumptions as in Proposition 2:

q∗
1−α ⩽ sup

C∈CK

∥C− IV∥F · Rγ(α), where Rγ(α) ≡

√√√√8
(
1− 1

V

)
γ2 · α

· V2

Nmin ·D
,

and γ ∈ (0, 1) is a constant such that for any (A,W) ∈ Θ,
∑D

d=1(AW)vd/D ⩾ γ/V for all v.
The first term in the bound has a closed-form solution and Rγ(α) can easily be computed for a chosen

value of γ. However, in our simulations we find that such an algebraic bound is extremely conservative
with poor power properties. We thus do not pursue this further.

• A “bootstrap bound” for q∗
1−α. For any matrix C ∈ CK we have that

T(Y) ⩽ ∥CP̂row
freq − P̂row

freq∥F

for any C ∈ CK (by the definition of T(Y)). Moreover, for any C ∈ CK we have

∥CP̂row
freq − P̂row

freq∥F = ∥(C− IV)(P̂row
freq − Prow) + CProw − Prow∥F.

Theorem 1 shows that for each P such that P = AW with (A,W) ∈ Θ0 there exists CP ∈ CK such that
CProw − Prow = 0V×D. Consequently,

T(Y) ⩽ ∥(CP − IV)(P̂row
freq − Prow)∥F. (28)

This means that for any (A,W) ∈ Θ0, the 1− α quantile of T(Y) under P is upper bounded by the 1− α

quantile of the random variable
∥(CP − IV)(P̂row

freq − Prow)∥F. (29)

In Section A.3 of the Appendix we show that one can approximate the distribution of (29) using a para-
metric bootstrap that replaces CP by CP̂ where P̂ is an estimator of P that imposes the anchor-words
assumption.
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In particular, let Â and Ŵ denote estimators of the parameters (A,W) under the anchor-words as-
sumption. Let P̂ ≡ ÂŴ denote the plug-in estimator for the population term-document frequency matrix
based on Â and Ŵ. Define Y∗

d as the random vector with distribution

Y∗
d ∼ Multinomial

(
Nd, (P̂)•d

)
, (30)

and assume that the columns of the matrix Y∗ ≡ (Y∗
1 , . . . ,Y

∗
D) are generated independently according to

(30).
Let P̂∗

freq denote the matrix of frequency counts associated with Y∗. That is, P̂∗
freq is the V ×D matrix

with d-th column given by Y∗
d/Nd. Consider approximating the unknown distribution in (29) by the

distribution of the random vector

∥(CP̂ − IV)((P̂∗
freq)

row − P̂row)∥F, (31)

conditional on P̂. Theorem 3 in Section A.3 of the Appendix shows that the distribution of (31), conditional
on the data, is close in P-probability to the distribution of the bounding random variable in (29). To
formalize this result we use the bounded Lipschitz metric (see p. 394 of Dudley (2002), and also Chapter
2.2.3 and Chapter 10 in Kosorok (2007)) to measure closeness between the distributions in (29) and (31).
The bootstrap “consistency” is established under two high-level assumptions that can be readily verified
when V and D are fixed and Nmin grows to infinity, but we think could potentially hold also in situations
where V and D also grow with Nmin.

The bootstrap consistency result in Section A.3 of the Appendix thus suggests that the 1 − α quantile
of (31) can be used to implement a conservative, point-wise valid version of our test at significance level
α. Note that this procedure is computationally straightforward as CP̂ is only computed once and thus
there is no need to recompute the anchor-word estimates across bootstrap simulations. Note also that the
bootstrap consistency in Theorem 3 essentially relies on a continuous mapping theorem; c.f., Proposition
10.7 Kosorok (2007) and, thus, there is no need for re-centering before getting the critical value.

4.2.3 Results

In the previous subsection, we showed that it is possible to use a “bootstrap bound” for the critical value
of the test described in Theorem 2. We established the “consistency” of our bootstrap strategy; but,
unfortunately, the consistency holds only “pointwise” at a fixed (A0,W0) in the null hypothesis. This
means that the test based on the bootstrap upper bound need not have the correct size in finite samples.
With this in mind, we next present simulation results based on the same set of DGPs (”With anchor words”
and ”No anchor words”) as in Section 4.1 to asses the size and power of our proposed bootstrap strategy.
Throughout, we assume K is known a priori and correctly specified. To recap, the “bootstraped” version
of our test can be described as follows.

Step 1. Given the data Y, compute the test statistic T(Y) = minC∈CK
∥CP̂row

freq − P̂row
freq∥F.

Step 2. Obtain an estimate for P that has the anchor-word factorization.
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(a) Since K is known, we follow the recommendation in Bing, Bunea & Wegkamp (2020b) and
run the algorithm of Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu & Zhu (2013) on Y to
obtain Â0

(b) Let Ŵ0 be the Maximum Likelihood estimator of W in the multinomial model (8) but treating
Â0 as the true unknown A (Bing, Bunea, Strimas-Mackey & Wegkamp (2022)).

(c) Let P̂0 = Â0Ŵ0

Step 3. Find CP̂0
by solving the minimization in (22).

Step 4. Estimate the quantile of the upper bound T∗(Y) ≡ ∥(CP − IV)(P̂row
freq − Prow)∥F, using the bootstrap.

(a) Simulate nsim new realizations of Y using P̂0.

(b) For each new realization Yi, obtain T∗
boots(Yi) ≡ ∥(CP̂0

− IV)((P̂i
freq)

row − P̂row
0 )∥F, for i =

1 . . . ,nsim, where P̂i
freq is the row-normalized term-document frequency matrix based on data

Yi.

(c) Set critical value cvα to the (1− α)th percentile of T∗
boots(Yi).

Step 5. Reject the null hypothesis if T(Y) is larger than cvα.

Figure 4 below presents the average power under “No anchor words” and average rates of Type I
error under “With anchor words” of the bootstrapped version of the test. In order to compute the average
performance of the test, we generate random draws from (A,W) using the same procedures used to
generate Figure 3. Then, for each of these draws, we sample the matrix of word counts, Y, from the
multinomial model in Equation (8), where each document contains 10, 000 words.

Figure 4a uses “No anchor words” (as described in the previous subsection) to generate draws from
(A,W). Since the probability of creating a matrix A that has anchor words is zero, the share of realizations
(Y,A,W) for which the bootstrapped test rejected the null can be interpreted as average power. For
V = 10 and K = 4, the bootstrapped test rejects in all realizations. On the other hand, we note that the
average power seems to deteriorate when the vocabulary size increases (e.g., for V = 100 and K = 4, we
obtain a power of 42%).

Figure 4b uses “With anchor words” (as described in the previous subsection) to generate draws from
(A,W), such that the word-topic matrix A always has an anchor-word factorization. Reporting the share
of realizations of (Y,A,W) for which the bootstrapped test rejects the null gives a Monte-Carlo approxi-
mation to the average rate of Type I error at a particular configuration (V ,K,D). The figure thus suggests
that the bootstrapped version of the test performs well in terms of its size. Using a nominal 5%-test, the
average rate of Type I error of the test ranges from 0-5% in Figure 4b.

To further illustrate the power of the test under our “No Anchor words” DGP, we next increase the
number of topics to K = 6, and vary the the vocabulary size V for two values of the document size nd.
We then compute the rejection frequency of our bootstrapped test. This is depicted in Figure 5. We again
conclude that our test exhibits nontrivial power and that the power of our test deteriorates as V increases,
especially for moderately sized documents. We note that the fact that for a fixed K, the power of our test
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(a) No anchor words (Power of the test) (b) With anchor words (Type 1 error of the test)

Figure 4: Proportion of realizations (Y,A,W) in which our test rejects as we vary the number of words and the
number of topics. D = 1000 and each document contains 10, 000 words. Figure based on 500 simulations of
(A,W).

Figure 5: Average power of our test as we vary the size of the vocabulary. We fix K = 6 and simulate 1000
documents. Figure based on 100 simulations.

deteriorates as we increase V is consistent with the results in Ding, Ishwar & Saligrama (2015). Their
results essentially show that, as V increases relative to K, any matrix A generated at random by a Dirichlet
distribution will be “closer” to a matrix with the anchor-word structure.

5 Empirical Application

In this section we analyze a subset of the “transcripts” of the meetings of the Federal Open Market Com-
mittee (FOMC), the main body within the Federal Reserve System in charge of setting monetary policy
in the United States. We focus on the FOMC transcripts during the “Greenspan period,” the 150 meetings
from August 1987 to January 2006 in which Alan Greenspan was chairman. We separate each transcript
into two parts: the discussion of domestic and international economic conditions (FOMC1) and the dis-
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cussion of the monetary policy strategy (FOMC2). This gives us two different corpora to analyze.
The first corpus (FOMC1) allows us to illustrate the potential benefits of assuming the existence of

anchor words in a concrete empirical application. Aside from the computational tractability and the the-
oretical identification results that become available under the anchor-words assumption, the estimated
anchor words can potentially provide natural and objective labels for the estimated topics. We think this is
an important point, as it has recently been argued that an inherent challenge of topic models in empirical
applications is that they “do not generate objective topic labels” and that “A given topic consists of many

words, and words are scattered across many topics, so the outputs are often difficult to interpret.”; see the
discussion in Section 3.2.2.1 of Ash & Hansen (2023). In contrast, the anchor words for FOMC1 are all
relatively easy to interpret. Moreover, the estimated topic proportions for the FOMC1 corpus seem to be
consistent with historical events that shaped monetary policy decisions during the Greenspan period.

On the other hand, we find the estimates we obtain under the anchor-words assumption for FOMC2
harder to interpret: Anchor words for different topics have very similar meanings, and thus it becomes
difficult to understand the difference between topics. Further, with the exception of two topics, we found
it difficult to provide a rationale for the historical evolution of the topic shares. We would like to argue
that this is not a flaw of the method; instead we think it may be a warning about the compatibility of the
anchor-words assumption and the true data generating process.

We then apply our suggested testing procedure to these two copora and indeed find that a nominal
5%-level test fails to reject the null hypothesis of anchor words for the FOMC1 corpus, but rejects for the
FOMC2 corpus.

The rest of this section is organized as follows. Section 5.1 presents a broad description of the FOMC
transcripts, along with some descriptive statistics for the FOMC1 and FOMC2 and corpora. Section 5.2
presents the estimation results for the parameters of the topic model, assuming the existence of anchor
words. This section also provides a detailed interpretation of the results. In Section 5.3 we then test the
anchor-words assumption in both corpora. Finally, Section 5.4 discusses the finite-sample properties of
the test.

5.1 FOMC transcripts

The nineteen participants of the FOMC meetings—seven members of the Board of Governors of the
Federal Reserve System and the presidents of the twelve regional Reserve Banks—convene regularly to
discuss domestic and international economic conditions, conditions in financial markets, and other factors
considered relevant for monetary policy. The purpose of this discussion is to make key decisions on the
stance of monetary policy. The FOMC Secretariat typically prepares a verbatim transcript of the FOMC
meeting proceedings and conference calls after their occurrence.11 This is the most detailed record of the
FOMC meeting and it is currently released with a lag of five years.

We focus on the FOMC transcripts during the “Greenspan period,” the 150 meetings from August 1987
to January 2006 in which Alan Greenspan was chairman. The transcripts can be obtained directly from

11The speakers’ original words are lightly edited to facilitate the reader’s understanding. In addition, a very small amount of
information received on a confidential basis is subject to deletion.

22



the website of the Federal Reserve. This dataset has been used recently in the work of Hansen et al. (2018)
(henceforth HMP) to study the effects of increased ‘transparency’ on the discussion inside the FOMC
when deciding monetary policy. We followed HMP in merging the transcripts for the two back-to-back
meetings in September 2003 and dropping the meeting on May 17, 1998.12 As a result, we ended up with
148 transcripts.

We removed non-alphabetical words, words with a length of one, and common stop words. We also
constructed the 150 most frequent bigrams (combinations of two words) and 50 most frequent trigrams
(three words). We then stemmed all the words using a standard approach13.

We separate each transcript into two parts: the discussion of domestic and international economic
conditions (FOMC1) and the discussion of the monetary policy strategy (FOMC2). These sections are not
sign-posted, so we manually separated each transcript (we tried to match closely the separation rules used
by HMP and discussed in their work). At the end, we construct two separate term-document matrices,
one for each section. To reduce the size of the vocabulary, we follow Ke et al. (2022) and further rank the
remaining terms by their term frequency-inverse document frequency (tf-idf) score and keep those with
the highest tf-idf score (we also manually looked at these terms to ensure that they were meaningful for
our analysis). At the end we are left with 200 terms for FOMC1 and 150 for FOMC2. The final two
term-document matrices that we use for estimation have dimension 200× 148 and 150× 148 each.

We start by providing a high level overview of our data. First, Figure 6 plots the document size for
each of the meetings included in our sample. The figure shows that documents in the FOMC1 corpus are
typically larger: The average document size in the FOMC1 corpus is 2309, but only 853 for FOMC2. We
also note that the number of words per meeting for FOMC1 exhibits a positive time trend, while the size
of the FOMC2 documents remained relatively stable over time.

Second, Figure 7 presents the “word cloud” corresponding to the vocabulary used in each corpus. A
word cloud is a convenient graphical representation of the frequency of each term in a corpus. Terms that
appear more frequently are depicted with a larger font size. The five highest terms in each corpus are
depicted in orange. Although the two corpora have a number of overlapping terms (e.g., data, concern,
expect, inflat, growth to name but a few), the word clouds suggest that the term distributions in the two
corpora are markedly different. This is consistent with the fact that the FOMC1 corpus focuses mainly
on the description of the domestic and foreign economic conditions that are relevant for monetary policy
decisions, while FOMC2 focuses on the discussion of monetary policy alternatives.

5.2 Anchor words in FOMC1 and FOMC2 corpora

5.2.1 Choosing K

Although the theory presented in Section 2 assumed the number of topics in the model to be known, in
practice K needs to be selected (a priori or a posteriori) by the researcher. As noted by Blei & Lafferty

12The beginning of the transcript for the May 17, 1998 meeting states: “No transcript exists for the first part of this meeting,
which included staff reports and a discussion of the economic outlook.”

13We used the Natural Language Toolkit (nltk) library in Python, its PorterStemmer package for word stemming, and
its Collocation package for the bigrams and trigrams.
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(a) FOMC1 (b) FOMC2

Figure 6: Number of words per document in the FOMC1/FOMC2 corpora. The solid horizontal line represents
the average number of words per meeting. For reference, the grey bars represent recession dates, as reported by the
National Bureau of Economic Research.
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Figure 7: Word Cloud for the FOMC1/FOMC2 corpora. The five highest terms in each corpus are colored in orange.

(2009) “choosing the number of topics is a persistent problem in topic modeling and other latent variable
analysis. In some cases, the number of topics is part of the problem formulation and specified by an
outside source. In other cases, a natural approach is to use cross validation on the error of the task at hand
(e.g., information retrieval, text classification).”

Bing et al. (2020a) have recently shown that the anchor-words assumption allows the researcher to
estimate K and, under some regularity assumptions, guarantee that the estimator is consistent (it coincides
with the true number of topics with high probability).14 We thus estimate the number of topics for the
FOMC1 and FOMC2 corpus separately using the algorithm suggested by Bing et al. (2020a), and ob-
tain K̂FOMC1 = 4 and K̂FOMC2 = 5. In the remaining part of the application we estimate the remaining
parameters of the topic model using these numbers of topics as given.

14We would like to thank the authors for kindly sharing their code to implement Algorithm 2 in Bing et al. (2020a).

24



5.2.2 Estimation of A

We start by reporting the estimates of A and W based on state-of-the-art algorithms that assume the
existence of anchor words.

To the best of our knowledge, the FOMC corpus has only been analyzed using the Latent Dirichlet
Allocation model of Blei, Ng & Jordan (2003) and the robust Bayes version of the algorithm recently
suggested by Ke et al. (2022).15 By reporting the model’s estimated parameters under the anchor-words
assumption, we provide a novel estimate of the topics discussed in FOMC meetings and their distributions.

Our results, however, suggest that—even without a formal statistical test—the estimates obtained from
imposing the anchor-words assumption may appear more reasonable in some contexts than in others. To
us, this means that the anchor-words assumption may not always be appropriate, and that a statistical test
for the existence of anchor words is a valuable tool for practitioners.

Estimated matrix A for FOMC1: Figure 8 presents word clouds summarizing the estimator of A ob-
tained from the FOMC1 corpus under the anchor-words assumption. Terms that have a higher estimated
probability under a given topic are depicted in larger font sizes, and the five terms with the highest proba-
bility appear in orange. Our baseline results are for the estimator suggested in Bing et al. (2020b), which
adapts to unknown sparsity of A, and is minimax optimal under some assumptions.16 The caption that
appears below each subfigure presents the anchor words corresponding to each topic; that is, the words
that are exclusive to the topic represented by the word cloud.

A practical advantage of using the anchor-words assumption in the estimation of A is that the anchor
words, along with the most frequent words in each topic, usually provide a simple interpretation for the
latent topic (and thus, a simple interpretation of the thematic structure in the corpus). For example, we
think that, without much controversy, we could label Topic 1 as “foreign conditions.” The anchor word
for this topic is “foreign” and the most frequent words on this topic —“export,” “dollar,” “import”— can
be associated to developments in foreign markets (such as changes in the exchange rate, foreign demand,
etc).

Topics 2 and 3 (which, using their anchor words, we can label “recoveri” and “uncertainty” respec-
tively) also have a straightforward interpretation. Topic 3 is an interesting finding given anecdotal evidence
on the importance that the themes of “risk and uncertainty” played on Alan Greenspan’s framework for
monetary policy.17

It is worth mentioning that the anchor words for each topic need not coincide with its most frequent
terms. For example, the anchor words in Topic 4 could, in principle, all be linked to goal of maximum

employment in the Federal Reserve’s policy mandate. However, none of the anchor words appears in the

15e.g., see Hansen et al. (2018) and Fligstein, Brundage & Schultz (2017)
16Section B.3 of the Online Supplementary Material presents results for the estimators suggested in Arora, Ge & Moitra

(2012), Ke et al. (2022), as well as the Latent Dirichlet Allocation. Note that Arora, Ge & Moitra (2012)’s algorithm outputs a
unique anchor word for each topic, whereas Bing et al. (2020b)’s algorithm can output multiple anchor words for a topic. The
topic estimates from Arora, Ge & Moitra (2012) are similar to our baseline result, giving anchor words “wage,” “uncertainti”
and “recoveri,” which are also anchor words in our baseline results. Ke & Wang (2022) and the LDA implementation don’t
explicitly impose anchor-words assumption, and give estimates different from Bing et al. (2020b).

17See, for example, Alan Greenspan’s famous 2003 speech in Jackson Hole, WY en-
titled “Monetary Policy Under Uncertainty,” available at the Federal Reserve’s website:
https://www.federalreserve.gov/boarddocs/speeches/2003/20030829/default.htm.
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five most frequent terms in the topic. In fact, the most frequent terms —“inflat,” “price,” “increase”—
are evocative of the goal of price stability, which is the other part of the Federal Reserve’s dual mandate.
Thus, one could label Topic 4 as the “dual mandate” topic.

In summary, we think that the four topics found in FOMC1 —“foreign conditions,” “recoveri,” “un-
certainty,” and “dual mandate”— indeed uncover a reasonable thematic structure in the FOMC1 corpus.

Estimated matrix A for FOMC2: Figure 9 presents word clouds summarizing the estimator of A

obtained from the FOMC2 corpus under the anchor-words assumption. Recall that FOMC2 corpus covers
the discussion of the monetary policy strategy. While it is again possible to interpret and label the topics
using a combination of its anchor words and its most likely terms, we think that the results are not as
clear-cut as in FOMC1.

Before giving an interpretation of the word clouds, it is worthwhile to make a few comments about
i) the policy instruments that the FOMC has available to conduct monetary policy, and ii) the way in
which policy choices are usually communicated to both the public and the Open Market Trading Desk
at the Federal Reserve Bank of New York. Understanding both of these components is important for the
interpretation of the estimated FOMC2 topics.

• FOMC’s Policy instruments. Traditionally, the Federal Reserve’s policy actions referred mainly to
open market operations (buying or selling securities issued or backed by the U.S. government in the open
market) in order to keep a key short-term money market interest rate, called the federal funds rate, at or
near a desired target. It is common to think about this desired target for the federal funds rate as the policy
variable selected by the Federal Reserve. Currently the Federal Reserve sets and announces a range for the
target rate (for example, 5.00% to 5.25%), provides “forward guidance” to markets, and makes choices
regarding balance sheet policies.18

• FOMC’s Communication of Monetary Policy. At the conclusion of each FOMC meeting, the Com-
mittee issues operating instructions to the Open Market Trading Desk at the Federal Reserve Bank of New
York (Thornton, Wheelock et al. (2000)). Also, after each meeting, the FOMC currently communicates
its decision about the stance of monetary policy to the public. The format in which the FOMC communi-
cates the outcome of the meeting has changed over time. For example, before 1994, the monetary policy
decision of the FOMC was not immediately communicated to the public. Instead, market participants
had to infer the Federal Reserve’s actions from conditions in the money market. Beginning in 1994 the
Federal Reserve started issuing a statement immediately after its meetings, but only if policy had changed.
Starting in June 1999 such a statement was released for every scheduled meeting, regardless of whether
or not there was a policy change. Also, from 1983 through 1999, the instructions to the Open Market
Trading Desk included a statement about the Committee’s expectations for future changes in the stance
of monetary policy, in addition to instructions for current policy. From Thornton (2006), “the statement
pertaining to possible future policy was known as the “symmetry,” “tilt,” or “bias,” of the policy directive.

18It is worth mentioning that the Federal Reserve has not always had an explicit operating target for the federal funds rate, and
has not always provided explicit forward guidance to markets participants. While the exact point in time at which the Federal
Reserve started using an explicit federal funds target rate is subject to some debate (Thornton 2006), it is common to assume
that the target for the federal funds rate summarized the FOMC’s deliberations about the monetary policy stance throughout the
Greenspan period.
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Figure 8: Bing et al. (2020b)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of words of
a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top 5 terms
with largetst weights are colored in orange. The estimated anchor words for each topic are in the caption.
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Figure 9: Bing et al. (2020b)’s estimator of A in the FOMC2 corpus. Each panel shows the word cloud of words of
a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top 5 terms
with largest weights are colored in orange. The estimated anchor words for each topic are in the caption.
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The directive was said to be symmetric if it indicated that a tightening or an easing of policy were equally
likely in the future. Otherwise, the directive was said to be asymmetric toward either tightening or easing.”

Based on the discussion above, we can assign the label “asymmetric policy directive” to Topic 1,
given that the anchor word for Topic 1 is “asymmetr” and the top five words associated with this topic are
“asymmetr,” “move,” “policy,” “inflation,” and “data”. The estimated W for FOMC2 confirms this topic
is important in the meetings between 1987 and 1999 (cf. Figure 10), which seems quite reasonable as
the policy directive was explicitly communicated to the Open Market Trading Desk (and was plausibly an
important part of the FOMC deliberations).

Topics 3 and 4 also seem to be related to the FOMC communication (and their corresponding anchor
words are “sentenc” and “announc”), but their interpretation is less clear (beyond the fact that they clearly
relate to the communication of the policy choice to the public). We would expect these topics to increase
after the year 2000, when the statements became more detailed. We come back to this point in the subse-
quent subsection when we discuss the estimated W for FOMC2. It is not quite clear to us why Topics 3
and 4 are considered different by the model.

A similar point can be made about Topic 2 and Topic 5. Topic 2 includes both “target” and “rang” as
anchor words (thus suggesting explicit targeting of the federal funds rate), while Topic 5 has the anchor
word “basi point” (which again is suggestive of explicit discussions about the target federal funds rate).

In summary, we think that the interpretation of the FOMC2 topics is not very transparent, which
informally suggests that the anchor-words assumption may not be appropriate for this corpus.

5.2.3 Estimation of W

We next report estimates of the matrix W, which contains the topic proportions in each document, again
estimating W separately in the FOMC1 and FOMC2 corpus. Our estimates of W are based on the recent
work of Bing et al. (2022), and correspond to the Maximum Likelihood estimator of W in the multinomial
model (8) but treating Â as the true unknown A.

Figure 10 presents the estimated topic proportions using a stacked bar graph. Since each FOMC
transcript is indexed by the day of its associated FOMC meeting, the x-axis in each graph is simply a date
stamp. At each of these dates, the stacked bars give the proportion that each of the meetings assigned to
each of the K latent topics (with the proportions adding to one by construction).

Estimated matrix W for FOMC1: Panel a) in Figure 10 presents the topic proportions corresponding
to the FOMC1 documents. The evolution of the topic proportions over time, and the label of the topics,
are consistent with historical events that shaped monetary policy decisions during the Greenspan period.
For example, it is well-known that Greenspan faced at least five periods of economic turbulence during his
tenure as chairman of the Federal Reserve: the October 1987 stock market crash, the Asian financial crisis
of 1997, the 9/11 terrorist attacks, and two US recessions (one in the early 90’s and one in the early 2000’s,
cf. Figure 6). The estimated matrix W shows that the “uncertainty” topic increases around these dates.
The “recoveri” topic also seems to become larger after these events. Further, the share of the “foreign
conditions” topic gets close to zero from 1992 to 1996, corresponding to the period between the Gulf War
and the 1997 Asian Financial Crisis.
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Estimated matrix W for FOMC2: Panel a) in Figure 10 presents the topic proportions corresponding
to the FOMC2 documents. The evolution of the topic proportions over time seems to be more erratic than
what we reported for FOMC1.

As we expected, Topic 1 (“asymmetric policy directive”) is very important before January 2000, but
practically disappears after this date. This is consistent with the fact that the FOMC decided to stop com-
municating explicitly the likely direction or the timing of future policy moves to the public (and instead
decided to include the “Committee’s assessment of the balance of risks between heightened inflation pres-
sure and economic weakness over the foreseeable future;” see Thornton et al. (2000)). Relatedly, Topic 3
(which has “sentence” as its anchor word, and “statement” as its most likely term) has a very small share
before January 2000, but it is the most important topic in the transcripts at the end of the sample. We found
it difficult to provide a rationale for the shares of the other topics in FOMC2.
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Figure 10: Bing et al. (2022)’s estimator of W for FOMC1 and FOMC2. The topic labels are based on the anchor
words as explained in Section 5.2.2.

5.3 Testing the anchor-words assumption

In the previous subsection we argued that the estimated parameters for FOMC1 admit a straightforward
interpretation. The estimated anchor words provide a clear distinction between the topics, and the esti-
mated topic proportions are consistent with historical events that shaped monetary policy decisions during
the Greenspan period. We also noted that results for the FOMC2 corpus are markedly different: both
the anchor words and the topics are difficult to interpret. With the exception of two topics, we found it
difficult to provide a rationale for the historical evolution of the topic shares. Motivated by these results,
in this section, we test the assumption of the existence of anchor words in both the FOMC1 and FOMC2
corpus. Our main finding is that the assumption of anchor words is rejected by a nominal 5%-level test in
the FOMC2 corpus, but not in the FOMC1 corpus.
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5.3.1 Test statistic

As we mentioned before, the computation of the test statistic T(Y) involves the minimization of a quadratic
objective function over the set CK, which is a set of bounded, real-valued V × V matrices defined by 1
linear equality and 2V2 linear inequalities We solve this optimization problem in MATLAB® (version
2022b) using the function lsqlin. The computation of the test statistic in our application takes only
137 seconds for FOMC1 and 58 seconds for FOMC2. The test statistics we obtain for the FOMC1 and
FOMC2 corpus are

T(YFOMC1) = .4938, T(YFOMC2) = .6401. (32)

5.3.2 Critical values

As discussed in Section 4.2.2, obtaining the critical value used in the test of Theorem 2 in our application
is extremely computationally demanding. For instance, one could try to create either a deterministic or
random grid of parameters (A,W) in Θ0, and approximate q∗

1−α from below by the largest quantile for the
random variable T(Y) over the grid. In the FOMC1 corpus, this will require constructing a deterministic (or
random grid) over matrices of dimension 200×4 and 4×148 that satisfy the anchor-words assumption. Due
to the dimension of the parameter space, it seems unlikely that one could generate a good approximation
of q∗

1−α using this approach. Below, we we report the critical values based on the two computationally
feasible approaches discussed in Section 4.2.2.

• Algebraic Upper Bound for q∗
1−α. Lemma 4 in Section A.5 of the Online Supplementary Material

implies that, under the same assumptions as in Proposition 2:

q∗
1−α ⩽ sup

C∈CK

∥C− IV∥F · Rγ(α),

where

Rγ(α) ≡

√√√√8
(
1− 1

V

)
γ2 · α

· V2

Nmin ·D
,

and γ ∈ (0, 1) is a constant such that for any (A,W) ∈ Θ,
∑D

d=1(AW)vd/D ⩾ γ/V for all v. The first
term in the bound has a closed-form solution. Its value for FOMC1 is 31.50, and for FOMC2 is 29.83.
To compute the second term that appears in the upper bound, we just need to choose a value of γ. The
value of γ controls the magnitude of the row sums of the matrix AW uniformly in our parameter space.
We pick the value of γ using the estimated values of A and W under the anchor-words assumption. More
precisely, we set

γ̂ ≡ V

2D
·minv∈V


D∑

d=1

(AW)vd

 ,
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which is guaranteed to be smaller than or equal to 1/2.19

Using this formula, the bound for q∗
1−α in FOMC1 becomes 87.84/

√
α and the bound in FOMC2

becomes 197.65/
√
α. This means that, using this conservative critical value, we fail to reject the null

hypothesis of anchor words in both FOMC1 and FOMC2 for any significance level. This suggests that the
algebraic upper bound is overly conservative.

• A “bootstrap bound” for q∗
1−α. Finally, we compute the “bootstrap bound” for q∗

1−α discussed in
Section 4.2.2. In our application, computing the critical value using 1, 000 simulations takes 182 seconds
for FOMC1 and 113 seconds for FOMC2. The 5%-critical values for FOMC1 and FOMC2 are 0.6310

and 0.6038 respectively. Comparing these critival values to our test statistics in (32), our test rejects the
null hypothesis of the existence of anchor words for FOMC2, but fails to reject it for FOMC1.

5.4 Finite-sample properties of the test

We have shown that it is possible to use a “bootstrap bound” for the critical value of the test described in
Theorem 2. We established the “consistency” of our bootstrap strategy; but, unfortunately, the consistency
holds only “pointwise” at a fixed (A0,W0) in the null hypothesis. This means that the test based on the
bootstrap upper bound need not have the correct size in finite samples. With this in mind, this section
presents a small simulation study to analyze both the rate of Type I error and Type II error of our test. The
simulation is based on the setup of FOMC2 data. This means that we set V = 150, D = 148, and we
consider document sizes equal to each of the FOMC2.

• Type I error. We first analyze the rate of Type I error of the test that uses the test statistic described
in Section 4.2.1 and the critical value based on the “bootstrap” upper bound described in Section 4.2.2. To
guarantee that the true data-generating process has anchor words and is comparable to the Type II error
discussed later, we do the following. We generate 1,000 arbitrary matrices, {Pi}

1,000
i=1 , by sampling D = 148

independent columns from the Dirichlet distribution in RV and with concentration parameter α = 1/200.
We then generate multinomial counts according to Pi with a large number of trials, and use the data to
construct estimates A0i and W0i (according to our discussion in Sections 5.2.2 and 5.2.3 based on Arora
et al. (2013), Bing et al. (2020b) and Bing et al. (2022)). Specifically, we use the STM-TOP algorithm
described in Bing et al. (2020b) with K = 5. In the remaining part of this section, we use A0i,W0i, and
K0 to denote the true model parameters used in the simulation.

Using P0i = A0iW0i, we generate i = 1, . . . 1000 new matrices of counts Yi (of dimension V × D)
based on the multinomial model in (8), where each of these multinomial trials uses the true size of the
documents in the application. For each of these new matrices Yi, we compute our test statistic in Equation
(23) (as we have explained before, computing this statistic takes around 58 seconds for each new dataset).

19Note that for any v ∈ V

γ̂ ⩽
V

2D
·

D∑
d=1

(AW)vd.

Thus, adding both sides over v ∈ V implies

Vγ̂ ⩽
V

2
,

which implies γ̂ ⩽ 1/2.
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We then get, for each Yi, the “bootstrap bound” suggested in Section 4.2.2. Denote this critical value by
ci. The average rate of Type I error using this critical value (the share of simulations for which T(Yi) > ci)
is 3.7% for the nominal 5% test. Thus, the simulations suggest the critical value based on the “bootstrap
bound” is conservative at certain parameter space under the setup of the FOMC2.

• Type II error/Power. Our claim in Theorem 2 is that the test suggested therein will have non trivial
power against at least one alternative. As we have discussed before, the critical value for this test is
not computationally feasible, so we analyze the power of the test that uses a critical value based on the
bootstrap upper bound discussed in Section 4.2.2.

We extract nonnegative matrix factorizations of {Pi}
1,000
i=1 using the standard nonnegative matrix fac-

torization routine in Matlab (which uses the KL-divergence as objective function, see the documentation
of MATLAB®’s function nnmf). We use the nonnegative factors as the true data generating process
(after normalizing the matrices to be column stochastic) and we denote them as A1i and W1i. Letting
P1i ≡ A1iW1i, we compute the value of infC∈CK

∥CProw
1i − Prow

1i ∥F (to confirm that P1i does not have an
anchor-word factorization). The average value of this statistic is 0.0885, and the 5% lower quantile is
0.0064. The average value of infC∈CK

∥CProw
1i − Prow

1i ∥F for concentration parameters α = 1 and α = 0.1

are 0.0410 and 0.0585, respectively. These values also suggest that using a concentration parameter equal
to α = 1/200 will lead to a larger average power than α = 1 and α = .1. We now take A1i and W1i as
the true data-generating process. The average power of the test (the share of simulation draws for which
T(Yi) > ci) that uses the critical value based on the “bootstrap bound” is close to 71.2% for the 5%
nominal test.

6 Conclusion

In this paper we show that the existence of anchor words in topic models where 2 < K < min{V ,K} is
statistically testable: There exists a test for the null hypothesis that anchor words exist, that has correct size
and nontrivial power. This means that imposing the anchor-words assumption to identify the parameters
of a topic model cannot be viewed simply as a convenient normalization. A key result to establish the
statistical testability of the anchor-words assumption is Theorem 1. This theorem shows that a column-
stochastic matrix (with known nonnegative rank K) admits a separable factorization if and only if the
linear program suggested by Recht et al. (2012) to find a nonnegative matrix factorization of separable
matrices has a nonempty choice set.

We establish the statistical testability of the anchor-words assumption by constructing an explicit test
that has correct size in finite samples. Our Theorem 2 shows that our suggested test has nontrivial power,
provided a certain high-level condition is verified. We also show that our high-level condition can be
verified in settings where the size of the available documents is large enough. In fact, Corollary 1 in
Section A.2 of the Appendix provides primitive conditions under which our test is consistent (its power
approaches one) at any (A,W) for which the corresponding matrix P = AW does not have an anchor-
word factorization.

An unsatisfactory aspect about our constructive results is that the critical value we suggest for the test
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in Theorem 2 is computationally infeasible in any realistic application. The computational difficulties
we face are in part due to the fact that testing whether there exists a nonnegative solution to a large-
scale system of linear equations—whose coefficients and ordinates may depend on the unknown data
distribution—is a difficult statistical problem. It is known that guaranteeing size control while remaining
computationally feasible is challenging; see Kitamura & Stoye (2018), Fang, Santos, Shaikh & Torgovit-
sky (2023) and Bai, Santos & Shaikh (2022). In fact, Fang et al. (2023) have recently devised a procedure
for testing the abstract hypothesis that the unknown distribution of an i.i.d sample satisfies a linear system
of equations of the form Ax = β, where x is a nonnegative (high-dimensional) vector and β depends
on the distribution of the data. Unfortunately, their results do not seem to be directly applicable to our
problem as the characterization provided in Theorem 1 involves the linear equation CProw = Prow (which
implies that both sides of the linear system of interest depend on the true distribution of the data). An in-
teresting question for future research is whether some extension of their recommended testing procedure
can be used to construct a test for the existence of anchor words. Another question of interest is whether
the “bootstrap bound” for the critical value we suggest in Section 4.2.2 of this paper could be used for the
problems considered in Fang et al. (2023).

In order to show the applicability of our results, we test for the existence of anchor words in two
different datasets derived from the transcripts of the meetings of the Federal Open Market Committee
(FOMC). One corpus discusses domestic and international economic conditions, and one corpus discusses
possible monetary policy strategies. In the latter, we reject the null hypothesis that anchor words exist.
For this case, it would be an interesting exercise for future work to estimate a topic model replacing
the anchor-words assumption by some weaker condition that yields point identification, and leads to a
computationally tractable statistical procedure; for example, some version of the sufficiently-scattered

assumption discussed in Huang et al. (2013), Huang et al. (2016), and more recently in Chen et al. (2022)
We hope that the results in this paper will lead to not only a better understanding of topic models,

but also to a better statistical understanding of more complex models of language such as large language
models (LLMs). For example, extending the concept of anchor words (and their testability) to neural topic
models that combine the strengths of topic modeling with deep learning would be an interesting avenue
for future research. It would also be interesting to think about whether the reported sensitivity of the in-
context learning capabalities of LLMs to “choice, format, and even the order of the demonstrations used”
reported in Wang, Zhu & Wang (2023) can be linked to the identification (or the lack thereof) of topic
models.

Finally, it is worth mentioning that the scope of the theoretical results established in this paper may
extend beyond textual data. First, in a very interesting recent paper, Moran, Sridhar, Wang & Blei (2021)
have shown that the popular “deep generative models” (which are used for conducting unsupervised rep-
resentation learning in high-dimensional data) can be identified by assuming the existence of “anchor
features.” We think it would be interesting to study whether such an assumption (which is analogous to
the anchor-words assumption in topic models) has testable implications (and is, therefore, incompatible
with certain distributions of the data).

Second, other uses of nonnegative matrix factorization include hyperspectral imaging, where the
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anchor-words assumption is replaced by a “pure pixel” assumption Ma, Bioucas-Dias, Chan, Gillis, Gader,
Plaza, Ambikapathi & Chi (2013), and community detection, where the anchor-words assumption is re-
placed by a “pure-node” assumption (Airoldi, Blei, Fienberg & Xing (2008), Mao, Sarkar & Chakrabarti
(2017)). It would be interesting to think about the testable implications of the analogs of anchor-words
assumption in these contexts.

Third, we think it would be interesting to apply topic models to other types of nonnegative data that
arise in economics and econometrics. A recent example of this is the analysis of finite mixtures of multi-
nomial logit models for market share data in Li (2024).
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A Proofs for Main Theoretical Results

A.1 Proof of Theorem 1

The proof of Theorem 1 uses the following lemmata.

Lemma 1. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits an

anchor-word factorization if and only if the following two conditions are met. First, there exists a nonneg-

ative matrix C̃ of dimension V × V such that

C̃Prow = Prow. (33)

Second, there exists a row permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
, M̃ ⩾ 0, (34)

where M̃ ∈ R(V−K)×K has rows different from zero.

Proof of Lemma 1. First we show that if P admits an anchor-word factorization then Equations (33) and
(34) are satisfied (this is the “ =⇒ ” side of the Lemma). The details are as follows. First, if the column-
stochastic matrix P ∈ RV×D with known nonnegative rank K has an anchor-word factorization, then there
exist column-stochastic matrices (A0,W0) such that

P = A0W0, A0 ∈ RV×K
+ , W0 ∈ RK×D

+ , and

ΠA0 =

[
D

M

]
,

for some diagonal D ∈ RK×K
+ , M ∈ R(V−K)×K

+ , and some row permutation matrix Π. Because the rows
of P are all different to the vector 01×K, the row sum of MW0 is positive for all its rows, and so are the
row sums of W0.

Define M̃ as the matrix
M̃ ≡

(
RMW0

)−1
MRW0

, (35)
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where RW0 is the diagonal matrix containing the row sums of W0 and RMW0 is the diagonal matrix
containing the row sums of MW0 (note that the inverse of RMW0

is well defined because the row sums of
MW0 are strictly positive).

Define

C ≡

[
IK 0

M̃ 0

]
,

where M̃ is defined in Equation (35). Algebra shows that

CΠProw =

[
IK 0

M̃ 0

]
Π
(
R−1

P P
)

(by definition of Prow)

=

[
IK 0

M̃ 0

]
R−1

ΠPΠP
(
since ΠR−1

P P = R−1
ΠPΠP

)
=

[
IK 0

M̃ 0

]
R−1

ΠPΠA0W0 (since P has an anchor-word factorization)

=

[
IK 0

M̃ 0

]
R−1

ΠP

[
D

M

]
W0. (since A0 has anchor words)

Since ΠP = ΠA0W0 =

[
D

M

]
W0, then

RΠP =

[
RDRW0

0

0 RMW0

]
.

Consequently,

CΠProw =

[
IK 0

M̃ 0

][
R−1

W0
R−1

D 0

0 R−1
MW0

][
D

M

]
W0

=

[
IK 0

M̃ 0

][
R−1

W0

R−1
MW0

M

]
W0 (where we have used the fact that RD = D)

=

[
R−1
W0

W0

M̃R−1
W0

W0

]

=

[
R−1
W0

W0(
RMW0

)−1
MW0

] (
where we have used the definition of M̃

)

=

[D
M

]
W0

row (
since(RDW0

)−1DW0 = R−1
W0

W0

)
= (ΠP)

row
= ΠProw.

(
since ΠR−1

P P = R−1
ΠPΠP

)
Thus, we have showed that if P has the anchor-word factorization then there exists M̃ and Π such that
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C̃Prow = Prow, where C̃ ≡ Π⊤

[
IK 0

M̃ 0

]
Π.

Now we show that if Equations (33) and (34) are satisfied, then P has an anchor-word factorization
(this is the “ ⇐= ” part of the Lemma). Suppose there exists M̃ ⩾ 0 (with rows different from zero) and
a row permutation matrix Π such that

C̃Prow = Prow and ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
. (36)

We show that P has an anchor-word factorization (and we give an explicit formula for the factors).
Since ΠTΠ equals the identity matrix of dimension V , Equation (36) implies that

ΠTΠC̃ΠTΠProw = R−1
P P.

If we left-multiply the equation above by RP and use the definition of C̃ in Equation (36), we obtain the
expression

RPΠ
⊤

[
IK 0

M̃ 0

]
ΠProw = P.

Left multiply this equation by Π⊤Π. Since ΠRPΠ
⊤ = RΠP we get

Π⊤RΠP

[
IK 0

M̃ 0

]
R−1

ΠPΠP = P (37)

where we have used that ΠProw = R−1
ΠPΠP.

Partition ΠP as

[
P̃1

P̃2

]
where P̃1 is K×D and P̃2 is (V − K)×D. From Equation (37) we have

P = Π⊤

[
RP̃1

0

0 RP̃2

][
IK 0

M̃ 0

]R−1

P̃1
0

0 R−1

P̃2

[P̃1

P̃2

]

= Π⊤

[
RP̃1

0

0 RP̃2

]IKR−1

P̃1
0

M̃R−1

P̃1
0

[P̃1

P̃2

]

= Π⊤

 IK 0

RP̃2
M̃R−1

P̃1
0

[P̃1

P̃2

]

= Π⊤

 IK
RP̃2

M̃R−1

P̃1

 P̃1.
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Let D∗ be the diagonal K×K matrix containing the column sums of the nonnegative matrix

 IK
RP̃2

M̃R−1

P̃1

.

Note then that we can define

A0 ≡

 IK
RP̃2

M̃R−1

P̃1

D∗−1 ∈ RV×K,

A∗
0 ≡ ΠTA0,

W∗
0 ≡ D∗P̃1 ∈ RK×D,

and, by construction,
P = A∗

0W
∗
0 = Π⊤A0W

∗
0 .

Note that A∗
0 is simply a row permutation of A0 and that A0 is a column-stochastic matrix that has the

form

[
D

M

]
, where D is a diagonal matrix and M has all of its rows different from zero. We just need to

show that W∗
0 is column stochastic. The matrix W∗

0 is clearly nonnegative, so we just need to show that
1⊤KW

∗
0 = 1D where 1K and 1D are the column vector of ones of dimension K and D respectively. But this

follows simply because ΠP is column stochastic and 1D = 1⊤VΠP = 1⊤VA0W
∗
0 = 1⊤KW

∗
0 . Thus, we have

found an anchor-word factorization for the matrix P using the factors A∗
0 and W∗

0 .

Lemma 2. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V ,D} admits a rank

K anchor-word factorization—in the sense of Definition 2—if and only if

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅, (38)

where
C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(39)

Proof of Lemma 2. By definition, the set CK(P) in Equation (38) can be written as

C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V ,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(40)

First we show that if the set C0
K(P) is nonempty, then P has an anchor-word factorization (this is the

“ ⇐= ” part of the Lemma). Suppose C∗ is an element of C0
K (P). Note that, by definition C∗ has K

42



diagonal elements equal to 1 and V − K elements equal to zero. Let J∗ ⊆ {1, ...,V} be the indexes j for
which C∗

jj = 1 and let C∗
j• denote the jth row of C∗.

Let 1V and 1D denote the column vector of ones of dimension V × 1 and D× 1 respectively. Because
Prow1D = 1V due to the row normalization, then C∗ is row normalized. This follows from:

C∗Prow = Prow =⇒ C∗Prow1D = Prow1D =⇒ C∗1V = 1V .

Consequently, because C ⩾ 0, for any j ∈ J∗, C∗
j• is the jth row of the identity matrix of dimension V ,

denoted IV .
For any J ∈ {1, ...,V}\J∗ we also have that the jth column of C∗, denoted C∗

•j equals zero. This follows
because 0 ⩽ C∗

ij ⩽ C∗
jj (by definition of the choice set of j) and C∗

jj = 0∀j ∈ {1, ...,V} \ J∗. This means
that C∗ has V − K columns equal to zero.

Note then that there exists a permuation matrix Π such that Π∗C∗Π∗⊤ =

[
IK 0

M̃ 0

]
where M̃ ⩾ 0.

Lemma 1 then shows that P has an anchor-word factorization.
Now we show that if P has the anchor-word factorization then C0

K(P) ̸= ∅ (this is the “ =⇒ ” part
of the Theorem). Suppose P has an anchor-word factorization. By Lemma 1, this implies there exists a
nonnegative matrix C̃ such that

C̃Prow = Prow (41)

and a permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

[
IK 0

M̃ 0

]
, M̃ ∈ R(V−K)×K,

with rows different from zero. Let Tr(·) denote the trace operator. Note that Tr
(
C̃
)
= K since Tr

(
C̃
)
=

Tr
(
C̃Π⊤Π

)
. Note also that the diagonal elements of C̃ are either {0, 1} since

e⊤j C̃ej = e⊤j C̃ej = e⊤j Π
⊤

[
IK 0

M̃ 0

]
Πej,

which equals 0 or 1 depending on the column selected by Π•j.
Finally, we show that C̃ij ⩽ C̃jj ∀i, j. To see this, note first that (41) implies

C̃Π⊤ΠProw = Prow,

which in turn implies [
IK 0

M̃ 0

]
ΠProw = ΠProw.

43



Thus, the elements of M̃ are at most one. Note that

C̃ij = e⊤i C̃ej = e⊤i Π
⊤

[
IK 0

M̃ 0

]
Πej.

If Πej ≡ Π•j selects a “zero” column of ΠC̃ΠT , then clearly C̃ij ⩽ C̃jj ∀i. If Π•j selects a non-zero
column of C̃, then C̃ij ⩽ C̃jj ∀i, since M̃ has elements bounded above by one.

Definition 4. Given a set S ⊆ RD
+ , we denote conv(S) as the convex hull of S that is, the set of all points

that can be obtained by taking convex combinations of points in S. Additionally, we let convDim(S) denote

the convex dimension of S that is, the size of the smallest subset T ⊆ S such that conv(T) = conv(S).

Lemma 3. Assume P ∈ RV×D
+ is a column-stochastic matrix with nonnegative rank K ⩽ min{V ,D}. If

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
= ∅ (42)

where C0
K is defined as Lemma 2, then convDim({(Prow

1,• )
⊤, . . . , (Prow

V ,•)
⊤}) > K.

Proof. We establish the contrapositive; namely, that if

convDim({(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤}) > K,

then C0
K(P) ̸= ∅.

Since convDim(Prow
1 , ...,Prow

V ) ⩽ K, we know that there exist K vectors in {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤} such
that all other vectors can be written as a convex combination of them. Let these vectors be (Prow

α1,•)
⊤, ..., (Prow

αK,•)
⊤,

where α1 < . . . < αL is a subset of {1, . . . ,V}. By definition of convex combination, for any j ⩽ K,
Prow
j,• =

∑K
i=1 jiP

row
αi,• with 0 ⩽ ji ⩽ 1 and

∑K
i=1 ji = 1.

We now construct a C ∈ C0
K(P). For i ∈ {α1, ...,αK}, let Cii = 1 and for j ̸= i, Cij = 0. For i, j /∈

{α1, ...,αK}, set Cij = 0. Finally, for i /∈ {α1, ...,αK} and j ∈ {α1, ...,αK}, Cij = j1. By construction,
CP = P and C ∈ C0

K.

Proof of Theorem 1. In light of Lemma 2, it suffices to show that

C0
K(P) ̸= ∅ ⇐⇒ CK(P) ̸= ∅. (43)

The “ =⇒ ” part of Equation (43) follows directly from the relation

C0
K(P) ⊆ CK(P).

To establish the “ ⇐= ” part of Equation (43) we use the contrapositive; namely, that

C0
K(P) = ∅ =⇒ CK(P) = ∅. (44)
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By Lemma 3, C0
K(P) = ∅ implies that L ≡ convDim(Prow) > K. It is thus sufficient to show that for any

C ∈ RV×V satisfying

C ⩾ 0, CProw = Prow, cii ⩽ 1, cji ⩽ cii, i, j = 1, . . . ,V , (45)

we must have tr(C) ⩾ L; thus implying that CK(P) is empty.
Define a loner of a row-normalized matrix as a row r which is not a convex combination of at least

two rows, r ′, r ′′, with r ̸= r ′ and r ̸= r ′′. By Definition 4 there exists L > K different vectors in RD:

p1, ...,pL,

such that PL ≡ {p1, ...,pL} is the smallest subset of P ≡ {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤} ⊆ RD
+ for which we have

conv(PL) = conv(P). Note that the loners in Prow—after being transposed to become elements of RD—
must contain the set {p1, ...,pL} (since, by definition, each of the elements of PL correspond to transposed
loners of Prow).

Consider the correspondence f that maps each of the elements pl ∈ PL to subsets of P according to

f(pl) ≡ {p ∈ P | pl = p}

= {(Prow
i,• )

⊤ ∈ P | pl = (Prow
i,• )

⊤, for some 1 ⩽ i ⩽ V}.

Thus, f(pl) collects all the elements of P that are equal to pl. Note that the correspondence is nonempty,
as it satisfies pl ∈ f(pl) for every l = 1, . . . ,L. Note also that for any l, l ′ ∈ {1, . . . ,L}, l ̸= l ′ we have
f(pl) ∩ f(pl ′) = ∅.

For each l = 1, . . .L, let r(l) denote a row of the matrix Prow for which

pl = (Prow
r(l),•)

⊤.

For any C satisfying (45) we must have that for every l = 1, . . . ,L

Cr(l),•P
row = p⊤

l = Prow
r(l),•. (46)

Since the tranpose of pl is a loner of Prow, then

cr(l),i ̸= 0 ⇐⇒ (Prow
i,• )

⊤ ∈ f(pl).

This means that the only rows of Prow that can be used to express pl are the elements of f(pl). Since all
the elements of f(pl) equal pl, then

Cr(l),•P
row =

 ∑
{i|cr(j),i ̸=0}

Cr(l),i

p⊤
l . (47)
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Equations (46) and (47) imply ∑
{i|cr(j),i ̸=0}

cr(j),i = 1.

Noting that for any C satisfying (45) we have cji ⩽ cii, then:

1 =
∑

{i|cr(l),i ̸=0}

cr(l),i ⩽
∑

{i|cr(l),i ̸=0}

ci,i =
∑

{i|(Prow
i,• )

⊤∈f(pl)}

ci,i.

To conclude the proof simply note that because the elements of C are nonnegative

tr(C) =
V∑
j=1

cj,j ⩾
L∑

l=1

 ∑
{i|(Prow

i,• )
⊤∈f(pl)}

ci,i

 ⩾ L.

This implies that any C satisfying (45) must have tr(C) ⩾ L > K, implying CK(P) = ∅. This establishes
(44).

A.2 Verification of the high-level assumption in Theorem 2.

• Term i) The characterization result in Theorem 1 readily implies that the term in i) is strictly positive
for any pair (A,W) for which the product AW does not admit an anchor-word factorization. This follows
by Remark 4 and the fact that the “inf” is attained (which we establish in Section A.2 of the Online
Supplementary Material). Thus, we can write the term in i) as a scalar f(V ,D,K,AW) > 0. We note this
term does not depend on the size of the documents.
• Term ii) The term ii) depends explicitly on the estimation error

P̂row − (AW)row. (48)

The submultiplicativity of Frobenius norm implies that the term in ii) is bounded above by

C∗(V ,K) · ∥P̂row − (AW)row∥, where C∗(V ,K) ≡ sup
C∈CK

∥(C− IV)∥. (49)

Since the space CK is compact (see Section A.2 in the Online Supplementary Material), C∗(V ,K) is finite.
Thus, the term in ii) will be small if P̂row is close to (AW)row with high probability.
• Term ii) Finally, Lemma 4 in Section A.5 of the Online Supplementary Material shows that

q∗
1−α(V ,D,K,ND) ⩽ C∗(V ,K) · q̃∗

1−α, (50)

where q̃∗
1−α is the “worst-case” 1−α quantile of the random variable ∥P̂row − (AW)row∥ when (A,W) ∈

Θ0.
In the remaining part of this subsection we show that under minimal regularity conditions on the param-
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eter space Θ one can guarantee that ∥P̂row − (AW)row∥ is small with high probability—and consequently
that both (49) and (50)are small—regardless of whether the parameters (A,W) belong to Θ0 or Θ1. An
important implication of the results in this section is that the plausibility of the high-level assumption in
(27) depends crucially on the estimator P̂row used to implement the test.

We will need some additional notation. Given the true parameters of the model, (A,W), we define the
v-th row sum of the population term-document frequency matrix as

pv(A,W) ≡
D∑

d=1

pvd,

where pvd is the (v,d)-entry of P = AW. Note that pv is used to row-normalize the matrix P. As defined
before, let Nmin to be smallest document size; that is, the minimum of {N1, . . . ,ND} and suppose that
∥ · ∥ is the Frobenius norm.

Let P̂freq the V ×D matrix with (v,d)-entry given by nvd/Nd. Let P̂row
freq the row-normalized version

of this estimator. In Section A.6.1 of the Online Supplementary Material we establish the following
proposition:

Proposition 2. Fix an arbitrary γ ∈ (0, 1). For any (A,W) such that pv(A,W)/D ⩾ γ/V for all v:

∥P̂row
freq − (AW)row∥ ⩽ Rγ(ϵ) ≡

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D
, (51)

with probability at least 1− ϵ.

Thus, the estimator that row-normalizes that empirical frequencies is expected to have a small estima-
tion error, ∥P̂row − (AW)row∥, with high probability provided

V2

Nmin ·D

is small. We next use Proposition (2) to show that the high-level condition in Theorem 2 will be verified
when Nmin is large.

Corollary 1. Fix an arbitrary γ ∈ (0, 1). Let Θ consist of all matrices (A,W) for which pv(A,W)/D ⩾

γ/V for all v.20 Then for any parameter value (A,W) ∈ Θ1 for which P = AW does not have an

anchor-word factorization we have that, for fixed (V ,K,D), the probability in (27) converges to one, as

Nmin → ∞. Moreover,

E(A,W)[ϕ
∗(Y)] → 1,

as Nmin → ∞.
20This rules out words in the vocabulary that occur extremely infrequently.

47



Proof. Equations (49) and (50) imply that the probability in (27) is bounded below by

P(A,W)

(
inf

C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)q̃∗
1−α(V ,D,K,ND)

+ C∗(V ,K) · ∥P̂row
freq − (AW)row∥

)
.

Proposition 2 readily implies that
q̃∗
1−α ⩽ Rγ(α).

Thus, the probability in (27) can be further bounded below by the probability of the event

E1 ≡
{

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + ∥P̂row

freq − (AW)row∥
]}

.

The term
inf

C∈CK

∥(C− IV)(AW)row∥

does not depend on ND. Moreover, Remark 4 after Theorem 1 implies that for any AW that does not
admit an anchor-word factorization we have

inf
C∈CK

∥(C− IV)(AW)row∥ > 0.

The definition of the function Rγ(·) then implies that for any ϵ > 0 there exists Nϵ large enough such that
Nmin > Nϵ implies

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + Rγ(ϵ)

]
. (52)

Then, whenever Nmin > Nϵ, Equation (52) implies that event

Eϵ ≡
{
∥P̂row

freq − (AW)row∥ ⩽ Rγ(ϵ)
}

is a subset of E1, as whenever event Eϵ occurs we have

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V ,K)
[
Rγ(α) + Rγ(ϵ)

]
⩾ C∗(V ,K)

[
Rγ(α) + ∥P̂row

freq − (AW)row∥.
]

Since, by definition of Rγ(ϵ) we have

P(A,W)(Eϵ) ⩾ 1− ϵ,

we conclude that the probability in (27) converges to 1 as Nmin → ∞. The last statement in the corollary
follows because E(A,W)[ϕ

∗(Y)] is lower bounded by (27).
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A.3 Critical values based on the parametric bootstrap

For any matrix A, we use vec(A) to denote the vectorization of A. Define RND
as the V × D diagonal

matrix with elements (
√
N1, . . . ,

√
ND) and let FND,V ,D,P denote the distribution of the random vector

vec
(
RND

(P̂row
freq − Prow)

)
. (53)

The distribution FND,V ,D,P is indexed by P since the distribution of (53) assumes that the matrix P gener-
ated the text data. We remind the reader that the superindex “row” denotes row normalization.

Let Â0 and Ŵ0 denote estimators of the parameters (A,W) under the anchor-words assumption. As
we have done throughout the paper, let P̂0 ≡ Â0Ŵ0 denote the plug-in estimator for the population term-
document frequency matrix based on Â0 and Ŵ0. Define Y∗

d as the random vector with distribution

Y∗
d ∼ Multinomial

(
Nd, (P̂0)•,d

)
, (54)

and assume that the columns of the matrix Y∗ ≡ (Y∗
1 , . . . ,Y

∗
D) are generated independently according (54).

Let P̂∗
freq denote the frequency count associated to Y∗. That is, P̂∗

freq is the V × D matrix with d-th
column given by Y∗

d/Nd and let F̂ND,V ,D denote the distribution of the random vector

vec
(
RND

((P̂∗
freq)

row − P̂row
0 )
)
, (55)

conditional on P̂0.
To define bootstrap consistency (which involves the asymptotic behavior of conditional distributions)

we use the bounded Lipschitz metric, see p. 394 of Dudley (2002), and also Chapter 2.2.3 and Chapter 10
in Kosorok (2007). For any Borel distributions P and Q over a euclidean space Rs (with s ⩾ 1) define

βs (P,Q) ≡ sup
f∈BL1(s)

∣∣EP[f(X)] − EQ[f(X)]
∣∣ , (56)

where BL1(s) is the space of functions f : Rs → R such that a) supx |f(x)| < ∞ and |f(x) − f(y)| ⩽

∥x− y∥.
We make the following high-level assumptions:

Assumption 1-Bootstrap: For any (A0,W0) ∈ Θ0

βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.
Assumption 1-Bootstrap (henceforth, A1-B) simply states that the bootstrap “consistenly estimates”

the distribution of the properly scaled, row-normalized frequency counts. While it is possible to establish
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Assumption A1-B under more primitive conditions, we use the high-level condition to simplify the expo-
sition of our results. We think that stating a high-level assumption allows for a better understanding of the
conditions that are needed to ensure the validity of our suggested bootstrap procedure.

Assumption 2-Boostrap: Let M̂ is a VD× VD random matrix such that for some matrix M

||M̂−M||F → 0

in P0 ≡ A0W0-probability, as Nmin → ∞. Then, for any ϵ > 0

PX∼F̂ND,V,D

(∣∣∣∥M̂X∥F − ∥MX∥F
∣∣∣ > ϵ

)
→ 0 (57)

in P0 ≡ A0W0-probability, as Nmin → ∞.
Assumption 2-Bootstrap (henceforth, A2-B) simply states that if M̂ and M are close to each other in

P0-probability, then the conditional laws of ∥M̂X∥F and ∥MX∥F—where X has distribution F̂ND,V ,D—are
also close to each other in P0-probability. If the distribution of X were not indexed by both the data and the
sample size, then Assumption 2-B would be a direct consequence of the Continuous Mapping Theorem;
e.g., Proposition 10.7 in Kosorok (2007), after verifying that X is bounded in probability. Since in our
case X is the bootstrapped distribution of the properly-scaled, row normalized frequency counts, verifying
Assumption 2-B directly requires verifying stronger assumptions.21

We now use assumptions A1-B and A2-B to establish the consistency of our bootstrap strategy. Let
GND,V ,D,P0

denote the distribution of the scalar

√
Nmin · ∥(CP0

− IV)(P̂row
freq − Prow

0 )∥F, (58)

assuming that the data was generated by a matrix P0 that satisfies the anchor-words assumption, and that
CP0

is the matrix that satisfies
∥CP0

Prow
0 − Prow

0 ∥ = 0.

Such a matrix exists by Theorem 1.

21For example, one could check whether the expectation under the bootstrap distribution of the random variable X is bounded
in P0-probability or P0-almost surely. By Markov’s inequality, (55) is bounded above by

1

ϵ
E
X∼F̂ND,V,D

[
∥X∥F

] ∥∥∥M̂−M
∥∥∥
F
.

If the sequence of random variables E
X∼F̂ND,V,D

[
∥X∥F

]
is tight (when the data is generated by P0), then Assumption 2-B

follows. Alternatively, we could impose a tightness-like assumption not on the sequence of expectations, but on the collection
of conditional distributions of X: assume for any λNmin → ∞ as Nmin → ∞,

P
X∼F̂ND,V,D

(
∥X∥F > λNmin

)
→ 0

in P0 probability. Then the left-hand side of (55) is bounded above by

P
X∼F̂ND,V,D

(
∥X∥F > ϵ/∥M̂−M∥F

)
.
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Let ĜND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP̂0

− IV)(P̂∗
freq)

row − P̂row
0 )∥F, (59)

conditional on P̂0.

Theorem 3. Suppose that Assumptions 1-B and 2-B hold and that

CP̂0
− CP0

→ 0

in P0 ≡ A0W0-probability. Then, for any (A0,W0) ∈ Θ0

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.

Proof. Broadly speaking, the proof is based on an application of a (Lipschitz) continuous mapping theo-
rem; c.f., Proposition 10.7 in Kosorok (2007). In essence, we use the Lipschitz continuity of ∥ · ∥F and
Assumptions 1-B and 2-B to show that the law of (58) and the (conditional) law of (59) are close to each
other—with high probability—in terms of the Bounded Lipschitz metric. We establish this proof in three
steps.

STEP 1: We first establish two Lipschitz continuity properties of ∥ · ∥F that will be used in the proof. Note
first that for any matrix M the mapping

x ∈ RV 7→ ∥Mx∥F

is Lipschitz continuous with constant ∥M∥F:

∥Mx∥F − ∥My∥F = ∥M(x− y) +My∥F − ∥My∥F
⩽ ∥M(x− y)∥F
⩽ ∥M∥F∥x− y∥F.

An analogous argument shows that for any x ∈ Rv the mapping

M ∈ RV×V 7→ ∥Mx∥F

is Lipschitz continuous with Lipschitz constant ∥x∥F.

STEP 2: Let G̃ND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP0

− IV)(P̂∗
freq)

row − P̂row
0 )∥F, (60)
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conditional on P̂0. The conditional distribution of (60) differs from (59) in that the former uses CP0 as
opposed to CP̂0

.
Since the scaling matrix RND

is invertible (for it is a diagonal matrix with strictly positive diagonal
elements), then

√
Nmin · ∥(CP0

− IV)(P̂row
freq − Prow

0 )∥F = ∥M̃ND,P0
RND

(P̂row
freq − Prow

0 )∥F,

where M̃ND,P0
≡ (CP0

−IV)(
√
NminR

−1
ND

). Moreover, because the Frobenius norm of a matrix is the same
as the Frobenius norm of its vectorization, then

∥M̃ND,P0
RND

(P̂row
freq − Prow

0 )∥F =

∥∥∥∥MND,P0
vec
(
RND

(P̂row
freq − Prow

0 )
)∥∥∥∥

F

,

where MND,P0
≡
(
ID ⊗ M̃ND,P0

)
. Therefore,

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼FND,V,D,A0W0
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)]
∣∣∣∣ .

By Step 1 the function ∥MND,P0
X∥ is Lipschitz with constant ∥MND,P0

X∥F. Therefore, if we use
BLc(s) to denote the space of Lipschitz functions f : Rs → R such that a) supx∈R2 |f(x)| < ∞ and b)
|f(x) − f(y)| ⩽ c∥x− y∥ then

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
is smaller than or equal to

sup
f∈BL∥∥∥∥MND,P0

∥∥∥∥
F

(V·D)

∣∣∣∣EX∼FND,V,D,A0W0
[f(X)] − EX∼F̂ND,V,D

[f(X)]

∣∣∣∣ ,
which equals ∥∥∥MND,P0

∥∥∥
F
βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
.

Since, by definition
MND,P0

=
(
ID ⊗ (CP0 − IV)(

√
NminR

−1
ND

)
)

and the diagonal elements of (
√
NminR

−1
ND

) equal
√

Nmin/Nd < 1, then ∥MND,P0
∥F is a bounded sequence

as Nmin → ∞. From Assumption 1-B, we conclude that

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.
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STEP 3: To finish the proof it suffices to show that

β1

(
G̃ND,V ,D , ĜND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.

By definition
β1

(
G̃ND,V ,D , ĜND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥M̂ND,P0

X∥F)]
∣∣∣∣ ,

where
M̂ND,P0

≡
(
ID ⊗ (CP̂0

− IV)(
√
NminR

−1
ND

)
)
,

and M is defined as in Step 2. For any f ∈ BL1(1), write∣∣∣∣ EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − EX∼F̂ND,V,D
[f(∥M̂ND,P0

X∥F)]
∣∣∣∣

as ∣∣∣∣ EX∼F̂ND,V,D

[
f(∥MND,P0

X∥F) − f(∥M̂ND,P0
X∥F)

] ∣∣∣∣ ,
which is bounded above by

EX∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F)−f(∥M̂ND,P0

X∥F)
)∣∣∣∣

1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

} ]
,

(61)

plus

EX∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F)−f(∥M̂ND,P0

X∥F)
)∣∣∣∣

1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ ⩽ ϵ

} ]
,

(62)

for any ϵ > 0. Note that in the expectations above M̂ is non-random, since we are conditioning on P̂0.
The term (61) is bounded above by

2 · EX∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
.

53



Since f ∈ BL1(s), the term (62) is bounded above by

EX∼F̂ND,V,D

[∣∣∣∣∥∥∥∥MND,P0
X

∥∥∥∥
F

−

∥∥∥∥M̂ND,P0
X

∥∥∥∥
F

∣∣∣∣
1

{∣∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣∣ ⩽ ϵ

}]
.

Consequently, the term (62) is bounded above by ϵ.
To finish the proof, note that since CP̂0

converges to CP0
in P0 ≡ A0W0 probability, then∥∥∥M̂ND,P0

−MND,P0

∥∥∥
F
→ 0

in P0 ≡ A0W0 probability. Assumption 2-B then implies

EX∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
→ 0

in P0 ≡ A0W0-probability.
From Steps 1,2, and 3 we conclude that since

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
⩽ β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
+ β1

(
G̃ND,V ,D , ĜND,V ,D

)
,

then

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0.

A.4 Proof of Remark 4

Claim: Let ∥ · ∥ be an arbitrary matrix norm. For any column-stochastic matrix P of nonnegative rank K

we have
CK(P) ≡ CK ∩

{
C ∈ RV×V | CProw = Prow

}
̸= ∅

if and only if
min
C∈CK

∥CProw − Prow∥ = 0.

Proof. We first show the “ =⇒ ” direction. Since CK(P) ̸= ∅, then there exists C∗ ∈ CK such that
C∗Prow = Prow. Since

0 ⩽ inf
C∈CK

∥CProw − Prow∥ ⩽ ∥C∗Prow − Prow∥ = 0,

then
inf

C∈CK

∥CProw − Prow∥ = ∥C∗Prow − Prow∥ = 0.
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Thus, the infimum is attained and
min
C∈CK

∥CProw − Prow∥ = 0.

For the “ ⇐= ” we note that if
min
C∈CK

∥CProw − Prow∥ = 0,

then, by definition, there exists C∗ ∈ CK such that

∥C∗Prow − Prow∥ = 0.

But since ∥ · ∥ is a norm, this implies C∗Prow − Prow = 0.
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A Supplementary Theoretical Results

A.1 Proof of Remark 5

Let P,Q be column-stochastic matrices of dimension V ×D. Define the total-variation distance between
P and Q as

∥P −Q∥TV =
1

2

V∑
v=1

D∑
d=1

|pv,d − qv,d|.

This extends the typical definition of the total-variation distance for discrete distributions; see p. 48,
Proposition 4.2 in Levin & Peres (2017).

Claim: Suppose that P is a column-stochastic matrix of nonnegative rank K ⩽ min{V ,D} that a) does not
admit an anchor-word factorization in the sense of Definition 2, and b) there exists some ϵ > 0

pv ≡
D∑

d=1

pv,d > ϵ, ∀ v = 1, . . . ,V .

Then, there is no sequence of matrices {Pi}i∈N for which Pi = AiWi, (Ai,Wi) ∈ Θ0 and ∥P−Pi∥TV → 0.

Proof. We establish this result by contradiction. Suppose there is a sequence {Pi}i∈N for which Pi =

AiWi, (Ai,Wi) ∈ Θ0 and ∥P − Pi∥TV → 0. Theorem 1 shows that for each i ∈ N, there exists a matrix
Ci ∈ CK such that

CiP
row
i = Prow

i .

Let ∥ · ∥ denote the Frobenius norm. For any Ci satisfyng CPi = Pi we have

∥CiP
row − Prow∥ = ∥CiP

row − CiP
row
i + CiP

row
i − Prow

i + Prow
i − Prow∥,

⩽ ∥Ci(P
row − Prow

i )∥+ ∥CiP
row
i − Prow

i ∥+ ∥Prow
i − Prow∥,

= ∥Ci(P
row − Prow

i )∥+ ∥Prow
i − Prow∥,

⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥.

Consequently,
inf

C∈CK

∥CProw − Prow∥ ⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥ (63)

for every i ∈ N. Because CK is bounded (as the matrices C ∈ CK have elements in [0, 1]), then the
sequence {∥Ci∥}i∈N is bounded. Moreover,

∥Prow − Prow
i ∥ =

√√√√ D∑
d=1

V∑
v=1

(prow
v,d − prow

i,(v,d))
2

1



⩽
D∑

d=1

V∑
v=1

|prow
v,d − prow

i,(v,d))|

=

D∑
d=1

V∑
v=1

∣∣∣pv,d

pv

−
pi,(v,d)

piv

∣∣∣,
where pv and piv represent the row sums of P and Pi, respectively. Since∣∣∣pv,d

pv

−
pi,(v,d)

piv

∣∣∣ =
∣∣∣pv,d

pv

−
pi,(v,d)

pv

+
pi,(v,d)

pv

−
pi,(v,d)

piv

∣∣∣,
then

∥Prow − Prow
i ∥ ⩽

D∑
d=1

V∑
v=1

1

pv

· |pv,d − pi,(v,d)|

+

D∑
d=1

V∑
v=1

pi,(v,d)

pv · piv

· |piv − pv|.

Since ∥Pi − P∥TV → 0 implies that |pi,(v,d) − pv,d| → 0 for all v = 1, . . . ,V and d = 1, . . . ,D then

∥Prow − Prow
i ∥ → 0,

and, because of (63)
inf

C∈CK

∥CProw − Prow∥ = 0.

This implies, by Theorem 1 that P admits an anchor-word factorization. A contradition.

A.2 Proof that infC∈CK
∥CP̂row − P̂row∥ is always attained

Claim: Let ∥ · ∥ denote the Frobenius norm. For any column-stochastic, row normalized matrix Prow,

inf
C∈CK

∥CProw − Prow∥ = min
C∈CK

∥CProw − Prow∥.

Proof. We want to show the minimum of ||CProw − Prow|| is attainable in CK when the norm is Frobenius.
By the extreme value theorem—e.g., Munkres (2000) Theorem 27.4 on page 174—it is sufficient to show
function fP(C) ≡ ∥CProw − Prow∥ is continuous in C over CK and that CK is compact. For the rest of the
proof, we work with the topology induced by the Euclidean metric in RV2

, and the topology over RV×V

induced by the Frobenius norm.
First, we show that fP(C) is continuous. For any ε > 0, there exists δ = ε/||Prow|| such that if

||C− C0|| < δ, then

| ∥CProw − Prow∥− ∥C0P
row − Prow∥ |⩽ ∥CProw − C0P

row∥ ⩽ ∥C− C0∥ · ∥Prow∥ < ε.

2



The first inequality holds due to the reverse triangle inequality and the second inequality comes from the
submultiplicativity of the Frobenius norm; see Horn & Johnson (2012) page 340.

Second, we show that the set CK is compact. It is sufficient to show CK is closed since it is a subset of
a compact space [0, 1]K×K; see Munkres (2000) Theorem 26.2 on page 165. For the compactness of the
space [0, 1]K×K, we rely on facts that the space [0, 1]K

2
is compact and the image of a compact space under

a continuous map is compact—see, for example, Munkres (2000) Theorem 26.5 on page 166—where we
depend on the continuous bijection hij(C̃) = C̃V(i−1)+j for any C̃ ∈ [0, 1]K

2
.

For a sequence {Cn ∈ CK}n∈N that converges, we want to show its limit C is in CK. Notice the matrix
converges in the Frobenius norm is equivalent to entry-wise convergences in absolute values. That is, if
limn→∞Cn = C, for any ε > 0, there exists N such that if n > N, |Cn,ij − Ci,j| ⩽ ||Cn − C|| ⩽ ε.
Also, if limn→∞Cn,ij = Cij for all i and j, for any ε/V > 0, there exists {Nij} such that if n > sup{Nij},
||Cn − C|| ⩽

√
V2( ε

V
)2 = ε. The last inequality is from the definition of the Frobenius norm.

Finally, by the definition of the convergence, the diagonal elements are bounded by 0 and 1, and the
off-diagonal elements also share the same bounds because if Cn,ij ⩽ Cjj, limCn,ij ⩽ Cjj. Therefore, C
is in CK and CK is closed.

A.3 An anchor-word factorization always exists when K = 2 ⩽ min{V ,D}

A.3.1 Proof using condition (20) of Theorem 1

Let P be a nonnegative column-stochastic matrix of rank K = 2 ⩽ min{V ,D}. Thomas (1974) has shown
that every rank two nonnegative matrix admits a nonnegative matrix factorization. Let (A,W) be the
nonnegative matrices in R2×V × R2×D that factorize P; that is P = AW.

Without loss of generality we can assume that A and W are column stochastic (that is, their columns
add up to one). Also, suppose that the first term in the vocabulary solves the problem c1 ≡ minv∈V av2/av1.
That is, we assume that the first term of the vocabulary receives the lowest possible probability under topic
two, relative to the probability that the same term receives under topic one. Analogously, suppose that the
second term in the vocabulary solves c2 ≡ minv∈V av1/av2. Note that if A were not organized in such a
way, we could always permute the rows of A to achieve this structure. Note also that the ratios involving
av1 and av2 are always well defined because none of the rows of P equal zero.

We will make use of the 2× 2 matrix

T ≡

(
1

1−c2
− c1

1−c1

−c2

1−c2

1
1−c1

)
,

where c1 and c2 are defined in the previous paragraph. Because A has rank two, both c1, c2 ∈ (0, 1). This
implies that T is well defined; that its determinant is strictly positive, and that T−1 is a column-stochastic
matrix.

3



In a slight abuse of notation, write A as the following block matrix

A =


A∗︸︷︷︸
2×2

Ã︸︷︷︸
V−2×2

 .

Consider then the V × V matrix given by

C ≡

[
I2 02×V−2

(RÃW)−1ÃTRT−1W 0V−2×V−2

]
. (64)

We will show that this matrix satisfies the necessary and sufficient condition for anchor-word factorization
in Theorem 1.

We first show that C is an element of the set C2 defined in Equation (18). Note first that Tr(C) = 2 and
that the diagonal elements of the matrix C are either 0 or 1. Thus, we only need to show that the elements
of the matrix

(RÃW)−1ÃTRT−1W (65)

are nonnegative and bounded above by one.
We first show that the elements of (65) are nonnegative. Note that ÃW (which corresponds to the

lower V − 2×D block of P) is a nonnegative matrix, which implies RÃW is nonnegative. Note also that
because T−1 is column stochastic, then T−1W is a column-stochastic matrix. Finally, since Ã is column
stochastic and c1, c2 ∈ (0, 1), it follows that ÃT is nonnegative.

We then show that the elements of (65) are bounded above by one. Since, by definition, RM is the
diagonal matrix that contains the row sums of a matrix M, algebra shows that

RÃW = R(ÃT)(T−1W) = RÃTRT−1W
.

Thus, the elements of the V−2×2 matrix (65) are bounded above by one. This shows that C is an element
of the set C2.

Finally, we show that C satisfies the equation CProw = Prow. Using the block matrix representation of
A

Prow =

(A∗W)row(
ÃW

)row

 .

The definition of C in Equation (64) implies

CProw =

(
(A∗W)row

(RÃW)−1ÃTRT−1W (A∗W)row

)
,

=

 (A∗W)row

(RÃW)−1ÃTRT−1W

(
(A∗T)

(
T−1W

))row

 .
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By construction, A∗T is a diagonal matrix, which implies(
(A∗T)

(
T−1W

))row
=
((

T−1W
))row

= RT−1WT−1W.

Thus, we conclude that CProw = Prow, and thus C ∈ C2(P). Theorem 1 thus implies that any matrix P of
rank K = 2 admits an anchor-word factorization.

A.3.2 Explicit anchor-word factorization when K = 2 ⩽ min{V ,D}

The proof of Theorem 1 gives a simple formula to obtain the anchor-word factorization of P from C ∈
C2(P). In particular, if we start out with the factors (A,W) that were used in the previous subsection, the
proof of Theorem 1 implies that the column-normalized version of the V × K matrix[

IK
ÃTRT−1WR−1

A∗W

]
(66)

provides an anchor-word factorization of P. Since A∗T is diagonal and column stochastic, then the matrix
in (66) equals [

A∗T

ÃT

]
(A∗T)

−1 ,

where we have used
RA∗W = RA∗TT−1W = A∗TRT−1W .

Thus,

A0 =

[
A∗T

ÃT

]
and W0 ≡ T−1W provide an anchor-word factorization of P.

A.4 An Anchor-word factorization does not always exist when V = 4, K = D = 3

A.4.1 Example

In this section we show that any matrix P of the form

P =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 ,

for α,β,γ ∈ (0, 1) does not admit an anchor-word factorization.
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The row-normalized version of P is given by:

Prow =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

 .

We define the set C̃K to be the set of V × V matrices of the form[
IK 0K×V−K

M 0V−K×K

]
,

where M ⩾ 0 is a row-normalized matrix (with rows different from zero, so that row-normalization is
always well defined). From Lemma 1, we want to show there does not exist C ∈ C̃K and a row permutation
matrix Π such that CΠProw = ΠProw.

Since K = 3 we can argue that it is only relevant to focus on four classes of permutations (which are
indexed by the row of Prow that is placed at the bottom of the permuted matrix). Without loss of generality,
we can focus on

Prow
1 =


1−α

1−α+β
0 β

1−α+β

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1 0 0

 ,

Prow
2 =


1 0 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

0 1 0

 ,

Prow
3 =


1 0 0

0 1 0
1−α

1−α+β
0 β

1−α+β

0 1−γ
2−γ−β

1−β
2−γ−β

 ,

Prow
4 =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β

0 β
1−α+β

 .

Note there is no C ∈ C̃K such that CProw
i = Prow

i for i = 1, 2, since this would require some elements
of M to be strictly above one.

Consider now the matrices Prow
3 and Prow

4 . We can focus on Prow
3 , since the argument for the other matrix

6



is entirely analogous. Let the elements of M, which is a 1 × 3 matrix, be denoted as [m1,m2,m3]. In
order for the first element of the last row of Prow

3 (which equals zero) to be a convex combination of the
first three rows it is necessary to have m1 = m3 = 0. However, this implies that the last element of the
fourth row of Prow

3 (which equals 1−β/2−γ−β) cannot be obtained as a convex combination of the first
three rows, whenever β ∈ (0, 1). Therefore there does not exist C ∈ C̃K such that CProw

3 = Prow
3 . Since

the argument for Prow
4 is analogous, we conclude that the anchor-word factorization does not exist for P.

A.5 Upper bound for q∗
1−α(V ,K,D,ND)

Lemma 4. Let ∥ · ∥ denote the Frobenius norm. For any α ∈ (0, 1)

q∗
1−α(V ,D,K,ND) ⩽ sup

C∈CK

∥C− IV∥ · q̃∗
1−α(V ,D,K,ND), (67)

where

q̃∗
1−α(V ,D,K,ND) = sup

(A,W)∈Θ0

q̃1−α(AW,V ,D,K,ND)

and

q̃1−α(AW,V ,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − (AW)row∥ ⩽ q

)
⩾ 1− α.

}
.

Proof. By definition—see Section 3.2— q1−α(AW,V ,D,K,ND) is the 1−α quantile of the test statistic
T(Y) under the distribution P = AW, (A,W) ∈ Θ0. Thus:

q1−α(AW,V ,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
.

Let CP ∈ CK be the matrix for which CProw − (AW)row = 0 (such a matrix exists by Theorem 1). Since
the test statistic T(Y) equals minC∈CK

∥CP̂row − P̂row∥, it follows that

T(Y) ⩽ ∥CPP̂
row − P̂row∥

= ∥CPP̂
row − CPP

row + CPP
row − Prow + Prow − P̂row∥

= ∥ (CP − IV) (P̂row − Prow)∥

⩽ sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥,

where the last inequality follows from the submultiplicativity of Frobenius norm. This inequality implies
that

Q1 ≡

q ∈ R+

∣∣∣∣∣ PAW

(
sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α


is a subset of

Q0 ≡
{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
.
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Therefore,
q1−α(AW,V ,D,K,ND) = infQ0 ⩽ infQ1. (68)

Define C∗(V ,K) ≡ supC∈CK
∥C− IV∥. We want to show that

infQ1 ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND).

Let
Q2 ≡

{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α.

}
,

and note that, by definition,
q̃1−α(AW,V ,D,K,ND) = infQ2.

By definition of infimum, there exists a sequence {qn}n∈N ⊆ Q2 such that

lim
n→∞qn = q̃1−α(AW,V ,D,K,ND). (69)

For each qn we have that (
C∗(V ,K) · qn

)
∈ Q1.

Consequently,
infQ1 ⩽ C∗(V ,K) · qn

for all n ∈ N. We thus conclude by (69) that

infQ1 ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND)

and by (68) that

q1−α(AW,V ,D,K,ND) ⩽ C∗(V ,K) · q̃1−α(AW,V ,D,K,ND).

Taking the supremum on both sides over (A,W) ∈ Θ0 gives the desired result.

A.6 Estimation error of different estimators

In this section we discuss two alternative estimators for Prow. Here is a description of the estimators and
the results we derive:

1. Nuclear-Norm Minimizer: Let P̂nuc be the estimator suggested by McRae & Davenport (2021),
Section 2.3, Theorem 2.2, p. 712. The following proposition follows from their Theorem 2.2:

Proposition 3. Let 0 < γ < 1 be an arbitrary scalar. For any (A,W) such that pv(A,W)/D ⩾
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γ/V

∥P̂row
nuc − (AW)row∥F ⩽ 4

√
16

γ2
·
V3/2 · ln

(
(D+ V)/ϵ

)
· K

Nmin
(70)

with probability at least 1− ϵ.

2. Minimax Estimator for the columns: Let P̂min the V×D matrix with (v,d)-entry given by (
√
Nd/V+

nvd)/(
√
Nd +Nd). Let P̂row

min the row-normalized version of this estimator. In Section A.6.2 below
we establish the following proposition:

Proposition 4. Let 0 < γ < 1 be arbitrary scalars. For any (A,W) such that pv(A,W)/D ⩾ γ/V

∥P̂row
min − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

(71)

with probability at least 1− ϵ.

The estimator that row-normalizes that minimax estimator is expected to satisfy the high-level as-
sumption in (27) provided

V2

Nmin + 2N
1/2
min + 1

is small. Here, we rely on the same technique as Proposition 3 to derive the rate. We can also
provide better rates with an order of

V2

D · (Nmin + 2N
1/2
min + 1)

with other assumptions about probability design and other techniques.

Outline for this section: Let P̂ be an arbitrary estimator of the population term-document frequency
matrix, P. Just as we did in the main body of the paper, define P̂row ≡ R−1

P̂
P̂ and Prow ≡ R−1

P P. We
establish a series of results that will allow us to provide finite-sample bounds for ||P̂row − Prow||F.

Lemma 5 below shows that in order to upper-bound the estimation error ||P̂row −Prow||F we can analyze
the terms

||R−1
P (P − P̂)||F (72)

and
||(R−1

P̂
− R−1

P )P̂||F. (73)

Lemma 6 uses Markov’s inequality to provide an upper bound for the term in (72). Lemma 7 provides
an upper bound for the term in (73). The bounds do not depend on the specific form of P̂ as long as the
second moments of the estimator exist.
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Lemma 5. If ||R−1
P (P − P̂)||F ⩽ δ1 with probability at least 1 − ϵ/2, and ||(R−1

P̂
− R−1

P )P̂||F ⩽ δ2 with

probability at least 1− ϵ/2, then with probability at least 1− ϵ,

||P̂row − Prow||F ⩽ 2max{δ1, δ2}.

Proof. Algebra shows that

||P̂δrow − Prow||F = ||R−1

P̂
P̂ − R−1

P P||F

= ||R−1

P̂
P̂ − R−1

P P̂ + R−1
P P̂ − R−1

P P||F

⩽ ||R−1

P̂
P̂ − R−1

P P̂||F + ||R−1
P P̂ − R−1

P P||F

= ||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F,

where the inequality comes from the triangle inequality.
The inequality above implies that for any constant c we have

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F > c).

Moreover, the right-hand side of the equation above is upper-bounded by

P(||R−1
P (P̂ − P)||F > c/2 or ||(R−1

P̂
− R−1

P )P̂||F > c/2).

The subadditivity of probability measures then implies

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F > c/2)

+ P(||(R−1

P̂
− R−1

P )P̂||F > c/2).

Take c = 2max{δ1, δ2} and note that

P(||R−1
P (P̂ − P)||F > max{δ1, δ2}) ⩽ P(||R−1

P (P̂ − P)||F > δ1) < ϵ/2,

and analogously P((R−1

P̂
− R−1

P )P̂ > max{δ1, δ2}) < ϵ/2.

Lemma 6. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then with

probability at least 1− ϵ

||R−1
P (P̂ − P)||F ⩽

1

pvmin

√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
ϵ

,

where the expectation E is taken under the true data generating process P.
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Proof. The definition of Frobenius norm implies that for any x > 0

P(||R−1
P (P̂ − P)||F > x) = P

∑
v

∑
d

1

p2
v

(pvd − p̂vd)
2 > x2


⩽ P

 1

p2
vmin

∑
v

∑
d

(pvd − p̂vd)
2 > x2


⩽

∑
v

∑
d E(pvd − p̂vd)

2

p2
vminx

2
,

where the last step follows from Markov’s inequality. Taking x to be√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
p2
vminϵ

completes the proof.

Lemma 7. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then with

probability at least 1− ϵ

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√∑V
v=1 E

[
(pv − p̂v)2

]
ϵ

where the expectation E is taken under the true data generating process P, and pv ≡
∑d

d=1 pvd, p̂v ≡∑d
d=1 p̂vd.

Proof.

||(R−1

P̂
− R−1

P )P̂||F =

∑
v

∑
d

(
1

pv

−
1

p̂v

)2p̂2
vd

1/2

=

∑
v

∑
d

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
vd

1/2

=

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

∑
d

p̂2
vd

1/2

⩽

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
v

1/2

⩽

 1

p2
vmin

∑
v

(p̂v − pv)
2

1/2

.
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The inequality above holds since (
∑

d p̂
2
vd)

1/2 ⩽
∑

d p̂vd = p̂v.
Then, for any x > 0

P(||(R−1

P̂
− R−1

P )P̂||F > x) ⩽ P

 1

p2
vmin

∑
v

(p̂v − pv)
2 > x2


⩽

∑
v E((p̂v − pv)

2)

p2
vminx

2
,

where the last line follows by Markov’s inequality. Taking

x =
1

pvmin

√∑
v E(pv − p̂v)2

ϵ
,

yields the desired result.

A.6.1 Estimation error of Prow
freq

Proof of Proposition 2. In a slight abuse of notation, let P̂ denote the V×D matrix with (v,d)-entry given
by nvd/Nd. Let P̂row the row-normalized version of this estimator.

Note that ∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

pvd(1− pvd)

Nd

⩽
∑
v

∑
d

pvd(1− pvd)

Nmin

=
∑
d

1−
∑

v p
2
vd

Nmin

⩽
D(1− 1

V
)

Nmin
.

The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The second
equality holds since the

∑
v pvd = 1. The second inequality comes from the fact that

min
p1d,...,pVd

∑
v

p2
vd s.t.

∑
v

pvd = 1

equals 1/V . Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√
2D(1− 1

V
)

Nminϵ
.
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Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√
2V2(1− 1

V
)

γ2DNminϵ
.

Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

=
1

pvmin

√
2
∑

v

∑
d E
[
(p̂vd − pvd)

]2
ϵ

=
1

pvmin

√
2D(1− 1

V
)

Nminϵ

⩽

√
2V2(1− 1

V
)

γ2DNminϵ
,

where the second equality holds because the estimators p̂vd are unbiased and they are also independent
across documents.

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the empirical frequencies
then

∥P̂row − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D

with probability at least 1− ϵ.

A.6.2 Estimation error of Prow
min

Proof of Proposition 4. In a slight abuse of notation, let P̂ denote the V×D matrix with (v,d)-entry given
by (

√
Nd/V + nvd)/(

√
Nd +Nd). Let P̂row be the row-normalized version of this estimator.

As above, we show that

∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

Ndpvd − 2Ndpvd

V
+ Nd

V2

(
√
Nd +Nd)2

⩽
∑
v

∑
d

pvd − 2pvd

V
+ 1

V2

Nmin + 2N
1/2
min + 1

=
∑
d

∑
v

pvd − 2pvd

V
+ 1

V2

Nmin + 2N
1/2
min + 1

=
D(1− 1

V
)

Nmin + 2N
1/2
min + 1

.

The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The third
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equality holds since the
∑

v pvd = 1.
Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√
2D(1− 1

V
)

(Nmin + 2N
1/2
min + 1)ϵ

.

Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√
2V2(1− 1

V
)

γ2D(Nmin + 2N
1/2
min + 1)ϵ

.

Note that

∑
v

E

∑
d

(p̂vd − pvd)
2

 =
∑
v

∑
d

E(p̂vd − pvd)
2 +

∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′).

We use the bound for the first term again and for the second term, we know

E(p̂vd − pvd) =
1
V
− pvd√
Nd + 1

.

So∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′) =
∑
v

∑
d̸=d ′

1

(
√
Nd + 1)2

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)
=

∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)

=
∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

pvdpvd ′ −
1

V


⩽

∑
d̸=d ′

1

(
√
Nd + 1)2

(
1−

1

V

)

⩽
D2
(
1− 1

V

)
Nmin + 2N

1/2
min + 1

.

The third equality holds since the
∑

v pvd = 1. The first inequality comes from the fact that

max
∑
v

pvdpvd ′ s.t.
∑
v

pvj = 1 and pvj ⩾ 0 for j = d or d ′
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equals to 1 by Kuhn-Tucker conditions. Therefore,

∑
v

E

∑
d

(p̂vd − pvd)
2

 ⩽
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

.

Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

⩽
1

pvmin

√√√√
2
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

⩽

√√√√ 2(D+ 1)V2(1− 1
V
)

γ2D
(
Nmin + 2N

1/2
min + 1

)
ϵ
.

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the minimax estimator then

∥P̂row − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

with probability at least 1− ϵ.

B Additional Results

B.1 Likelihood of an anchor-word factorization under sparsity

In this section, we study how likely it is that a randomly generated population term-document frequency
matrix admits a separable factorization as we vary the degree of sparsity in the word-topic matrix A. To
do so, we again start by creating the columns of both A and W as draws from independent Dirichlet
distributions with α = 1. We then randomly set ⌊βV⌋ entries in each column of A equal to zero, where
β ∈ [0, 1) and ⌊x⌋ denotes the integer part of x.1 For this exercise, we fix K = 3, V = 100 and D = 100.
This is depicted in Figure 11. With β = 0, our DGP is identical to the quadrant of Figure 3 that corresponds
to K = 3 and V = 100. In line with Figure 3a, we see that no anchor-word factorization exists across
realizations when there is no sparsity. However, as the amount of sparsity in A increases, an anchor-word
factorization is increasingly likely to exist, and for values of β > 0.2 an anchor-word factorization exists
in almost all realizations.

1We disregard realizations of A in which entire rows are equal to zero. Effectively, these are realizations with a smaller
value of V and less sparsity.
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Figure 11: Fraction of realizations with an anchor-word factorization as we vary the amount of sparsity in A. Non-
zero entries of the word-topic matrix A have a Dirichlet distribution with concentration parameter α = 1. Figure
based on 200 simulations.

B.2 Estimating A under the anchor word assumption for a DGP with no anchor
words

We return to the simple example from Section A.4.1 of the Online Supplementary Material (and underlying
Figure 2b), in which V = 4,K = D = 3, and

A = P =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 .

In particular, we set α = β = γ = 0.5. We then sample documents of size 10,000 according to P by
drawing the matrix of word counts, Y, from the multinomial model in Equation 8. We repeat this exercise
1000 times to create 1000 artificial datasets.

For each of the 1000 simulated datasets we then run the the algorithm of Arora et al. (2013) on Y to
obtain Â, correctly setting K = 3.2 The algorithm of Arora et al. (2013) assumes the existence of anchor
words, and is guaranteed to return an estimate Â with K anchor words. Across our simulations, the first
two words (corresponding to the first two rows in P) are anchor words in every realization. On the other
hand, the words corresponding to the third and fourth row in P are both wrongly identified as anchor words
in roughly half of the realizations (in 48% and 52% of realizations respectively).

In fact, (up to a column permutation that is immaterial) we obtain one of two estimates with about equal
probability, arbitrarily implying very different topics depending on the realization. These are depicted

2We alternatively tried to run the algorithms of Bing et al. (2020a) and Ke & Wang (2022). These also assume the existence
of anchor words, and yield inconsistent results across our simulation, frequently returning errors.
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below.3

Â1 =


1 0 0

0 ≈ 0.5 0

0 ≈ 0.5 ≈ 1/3

0 0 ≈ 2/3

 , Â2 =


≈ 0.5 0 0

0 1 0

0 0 ≈ 2/3

≈ 0.5 0 ≈ 1/3

 .

Further, recalling that the true word-topic matrix is given by

A =


0.5 0 0

0 0.5 0

0 0.5 0.5

0.5 0 0.5

 ,

we note that both estimates give very misleading estimates for two of the three true topics: In realizations
that return Â1, only the second topic (corresponding to the second column in A) is estimated correctly,
while in realizations that return Â2, only the first topic (corresponding to the first column in A) is estimated
correctly.

3While entries equal to zero or one are identical across all realizations, the remaining entries (preceded by ≈) will be
numerically different but close to the indicated value across realizations.
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B.3 Alternative estimators for the topics in the FOMC1 corpus.
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Figure 12: Arora, Ge & Moitra (2012)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of
words of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top
5 terms with largest weights are colored in orange. The estimated anchor-word for each topic is in the caption.
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Figure 13: Ke & Wang (2022)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of words
of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top 5 terms
with largest weights are colored in orange.
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Figure 14: Latent Dirichlet Allocation estimator of A in the FOMC1 corpus with uniform priors. Each panel shows
the word cloud of words of a topic (column in A matrix), where the font size is proportional to term’s weight in the
topic, and the top 5 terms with largest weights are colored in orange.
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