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A Proofs for Main Theoretical Results

A.1 Proof of Theorem 1

The proof of Theorem 1 uses the following lemmata.

Lemma 1. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V,D} admits an anchor-

word factorization if and only if the following two conditions are met. First, there exists a nonnegative matrix

C̃ of dimension V × V such that

C̃Prow = Prow. (32)

Second, there exists a row permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

IK 0

M̃ 0

 , M̃ ⩾ 0, (33)

where M̃ ∈ R(V−K)×K has rows different from zero.

Proof of Lemma 1. First we show that if P admits an anchor-word factorization then Equations (32) and (33)

are satisfied (this is the “ =⇒ ” side of the Lemma). The details are as follows. First, if the column-stochastic

matrix P ∈ RV×D with known nonnegative rank K has an anchor-word factorization, then there exist column-

stochastic matrices (A0,W0) such that

P = A0W0, A0 ∈ RV×K
+ , W0 ∈ RK×D

+ , and

ΠA0 =

D
M

 ,

for some diagonal D ∈ RK×K
+ , M ∈ R(V−K)×K

+ , and some row permutation matrix Π. Because the rows of P

are all different to the vector 01×K, the row sum of MW0 is positive for all its rows, and so are the row sums

of W0.

Define M̃ as the matrix

M̃ ≡
(
RMW0

)−1
MRW0 , (34)

where RW0 is the diagonal matrix containing the row sums of W0 and RMW0 is the diagonal matrix containing

the row sums of MW0 (note that the inverse of RMW0 is well defined because the row sums of MW0 are strictly

positive).

Define

C ≡

IK 0

M̃ 0

 ,

where M̃ is defined in Equation (34). Algebra shows that

CΠProw =

IK 0

M̃ 0

Π
(
R−1
P P

)
(by definition of Prow)

1



=

IK 0

M̃ 0

R−1
ΠPΠP

(
since ΠR−1

P P = R−1
ΠPΠP

)

=

IK 0

M̃ 0

R−1
ΠPΠA0W0 (since P has an anchor-word factorization)

=

IK 0

M̃ 0

R−1
ΠP

D
M

W0. (since A0 has anchor words)

Since ΠP = ΠA0W0 =

D
M

W0, then

RΠP =

RDRW0 0

0 RMW0

 .

Consequently,

CΠProw =

IK 0

M̃ 0

R−1
W0

R−1
D 0

0 R−1
MW0

D
M

W0

=

IK 0

M̃ 0

 R−1
W0

R−1
MW0

M

W0 (where we have used the fact that RD = D)

=

 R−1
W0

W0

M̃R−1
W0

W0


=

 R−1
W0

W0(
RMW0

)−1
MW0

 (
where we have used the definition of M̃

)

=


D
M

W0


row (

since(RDW0)
−1DW0 = R−1

W0
W0

)
= (ΠP)row = ΠProw.

(
since ΠR−1

P P = R−1
ΠPΠP

)
Thus, we have showed that if P has the anchor-word factorization then there exists M̃ and Π such that

C̃Prow = Prow, where C̃ ≡ Π⊤

IK 0

M̃ 0

Π.

Now we show that if Equations (32) and (33) are satisfied, then P has an anchor-word factorization (this

is the “ ⇐= ” part of the Lemma). Suppose there exists M̃ ⩾ 0 (with rows different from zero) and a row

permutation matrix Π such that

C̃Prow = Prow and ΠC̃Π⊤ =

IK 0

M̃ 0

 . (35)

We show that P has an anchor-word factorization (and we give an explicit formula for the factors).
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Since ΠTΠ equals the identity matrix of dimension V , Equation (35) implies that

ΠTΠC̃ΠTΠProw = R−1
P P.

If we left-multiply the equation above by RP and use the definition of C̃ in Equation (35), we obtain the

expression

RPΠ
⊤

IK 0

M̃ 0

ΠProw = P.

Left multiply this equation by Π⊤Π. Since ΠRPΠ
⊤ = RΠP we get

Π⊤RΠP

IK 0

M̃ 0

R−1
ΠPΠP = P (36)

where we have used that ΠProw = R−1
ΠPΠP.

Partition ΠP as

P̃1
P̃2

 where P̃1 is K×D and P̃2 is (V − K)×D. From Equation (36) we have

P = Π⊤

RP̃1
0

0 RP̃2

IK 0

M̃ 0

R−1
P̃1

0

0 R−1
P̃2

P̃1
P̃2


= Π⊤

RP̃1
0

0 RP̃2

IKR−1
P̃1

0

M̃R−1
P̃1

0

P̃1
P̃2


= Π⊤

 IK 0

RP̃2
M̃R−1

P̃1
0

P̃1
P̃2


= Π⊤

 IK
RP̃2

M̃R−1
P̃1

 P̃1.

Let D∗ be the diagonal K × K matrix containing the column sums of the nonnegative matrix

 IK
RP̃2

M̃R−1
P̃1

.

Note then that we can define

A0 ≡

 IK
RP̃2

M̃R−1
P̃1

D∗−1 ∈ RV×K,

A∗
0 ≡ ΠTA0,

W∗
0 ≡ D∗P̃1 ∈ RK×D,

and, by construction,

P = A∗
0W

∗
0 = Π⊤A0W

∗
0 .

Note that A∗
0 is simply a row permutation of A0 and that A0 is a column-stochastic matrix that has the form
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D
M

 , where D is a diagonal matrix and M has all of its rows different from zero. We just need to show that

W∗
0 is column stochastic. The matrix W∗

0 is clearly nonnegative, so we just need to show that 1⊤KW
∗
0 = 1D

where 1K and 1D are the column vector of ones of dimension K and D respectively. But this follows simply

because ΠP is column stochastic and 1D = 1⊤VΠP = 1⊤VA0W
∗
0 = 1⊤KW

∗
0 . Thus, we have found an anchor-

word factorization for the matrix P using the factors A∗
0 and W∗

0 .

Lemma 2. A column-stochastic matrix P ∈ RV×D with nonnegative rank K ⩽ min{V,D} admits a rank K

anchor-word factorization—in the sense of Definition 2—if and only if

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅, (37)

where
C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(38)

Proof of Lemma 2. By definition, the set CK(P) in Equation (37) can be written as

C0
K(P) ≡ { C ∈ RV×V | C ⩾ 0,

CProw = Prow

tr (C) = K,

cjj ∈ {0, 1}, for all j = 1, . . . ,V,

cij ⩽ cjj, for all i, j = 1, . . . ,V}.

(39)

First we show that if the set C0
K(P) is nonempty, then P has an anchor-word factorization (this is the “ ⇐= ”

part of the Lemma). Suppose C∗ is an element of C0
K (P). Note that, by definition C∗ has K diagonal elements

equal to 1 and V −K elements equal to zero. Let J∗ ⊆ {1, ...,V} be the indexes j for which C∗
jj = 1 and let C∗

j•
denote the jth row of C∗.

Let 1V and 1D denote the column vector of ones of dimension V × 1 and D × 1 respectively. Because

Prow1D = 1V due to the row normalization, then C∗ is row normalized. This follows from:

C∗Prow = Prow =⇒ C∗Prow1D = Prow1D =⇒ C∗1V = 1V .

Consequently, because C ⩾ 0, for any j ∈ J∗, C∗
j• is the jth row of the identity matrix of dimension V , denoted

IV .

For any J ∈ {1, ...,V} \ J∗ we also have that the jth column of C∗, denoted C∗
•j equals zero. This follows

because 0 ⩽ C∗
ij ⩽ C∗

jj (by definition of the choice set of j) and C∗
jj = 0∀j ∈ {1, ...,V} \ J∗. This means that

C∗ has V − K columns equal to zero.

Note then that there exists a permuation matrix Π such that Π∗C∗Π∗⊤ =

IK 0

M̃ 0

 where M̃ ⩾ 0. Lemma

1 then shows that P has an anchor-word factorization.

4



Now we show that if P has the anchor-word factorization then C0
K(P) ̸= ∅ (this is the “ =⇒ ” part of the

Theorem). Suppose P has an anchor-word factorization. By Lemma 1, this implies there exists a nonnegative

matrix C̃ such that

C̃Prow = Prow (40)

and a permutation matrix Π of dimension V such that

ΠC̃Π⊤ =

IK 0

M̃ 0

 , M̃ ∈ R(V−K)×K,

with rows different from zero. Let Tr(·) denote the trace operator. Note that Tr
(
C̃
)

= K since Tr
(
C̃
)

=

Tr
(
C̃Π⊤Π

)
. Note also that the diagonal elements of C̃ are either {0, 1} since

e⊤j C̃ej = e⊤j C̃ej = e⊤j Π
⊤

IK 0

M̃ 0

Πej,

which equals 0 or 1 depending on the column selected by Π•j.

Finally, we show that C̃ij ⩽ C̃jj ∀i, j. To see this, note first that (40) implies

C̃Π⊤ΠProw = Prow,

which in turn implies  IK 0

M̃ 0

ΠProw = ΠProw.

Thus, the elements of M̃ are at most one. Note that

C̃ij = e⊤i C̃ej = e⊤i Π
⊤

IK 0

M̃ 0

Πej.

If Πej ≡ Π•j selects a “zero” column of ΠC̃ΠT , then clearly C̃ij ⩽ C̃jj ∀i. If Π•j selects a non-zero column

of C̃, then C̃ij ⩽ C̃jj ∀i, since M̃ has elements bounded above by one.

Definition 4. Given a set S ⊆ RD
+ , we denote conv(S) as the convex hull of S that is, the set of all points

that can be obtained by taking convex combinations of points in S. Additionally, we let convDim(S) denote the

convex dimension of S that is, the size of the smallest subset T ⊆ S such that conv(T) = conv(S).

Lemma 3. Assume P ∈ RV×D
+ is a column-stochastic matrix with nonnegative rank K ⩽ min{V,D}. If

C0
K(P) ≡ C0

K ∩
{
C ∈ RV×V | CProw = Prow

}
= ∅ (41)

where C0
K is defined as Lemma 2, then convDim({(Prow

1,• )
⊤, . . . , (Prow

V ,•)
⊤}) > K.

Proof. We establish the contrapositive; namely, that if convDim({(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤}) > K, then C0
K(P) ̸=

∅.
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Since convDim(Prow
1 , ...,Prow

V ) ⩽ K, we know that there exist K vectors in {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤} such that

all other vectors can be written as a convex combination of them. Let these vectors be (Prow
α1,•)

⊤, ..., (Prow
αK,•)

⊤,

where α1 < . . . < αL is a subset of {1, . . . ,V}. By definition of convex combination, for any j ⩽ K, Prow
j,• =∑K

i=1 jiP
row
αi,• with 0 ⩽ ji ⩽ 1 and

∑K
i=1 ji = 1.

We now construct a C ∈ C0
K(P). For i ∈ {α1, ...,αK}, let Cii = 1 and for j ̸= i, Cij = 0. For

i, j /∈ {α1, ...,αK}, set Cij = 0. Finally, for i /∈ {α1, ...,αK} and j ∈ {α1, ...,αK}, Cij = j1. By construction,

CP = P and C ∈ C0
K.

Proof of Theorem 1. In light of Lemma 2, it suffices to show that

C0
K(P) ̸= ∅ ⇐⇒ CK(P) ̸= ∅. (42)

The “ =⇒ ” part of Equation (42) follows directly from the relation

C0
K(P) ⊆ CK(P).

To establish the “ ⇐= ” part of Equation (42) we use the contrapositive; namely, that

C0
K(P) = ∅ =⇒ CK(P) = ∅. (43)

By Lemma 3, C0
K(P) = ∅ implies that L ≡ convDim(Prow) > K. It is thus sufficient to show that for any

C ∈ RV×V satisfying

C ⩾ 0, CProw = Prow, cii ⩽ 1, cji ⩽ cii, i, j = 1, . . . ,V, (44)

we must have tr(C) ⩾ L; thus implying that CK(P) is empty.

Define a loner of a row-normalized matrix as a row r which is not a convex combination of at least two

rows, r ′, r ′′, with r ̸= r ′ and r ̸= r ′′. By Definition 4 there exists L > K different vectors in RD:

p1, ...,pL,

such that PL ≡ {p1, ...,pL} is the smallest subset of P ≡ {(Prow
1,• )

⊤, . . . , (Prow
V ,•)

⊤} ⊆ RD
+ for which we have

conv(PL) = conv(P). Note that the loners in Prow—after being transposed to become elements of RD—must

contain the set {p1, ...,pL} (since, by definition, each of the elements of PL correspond to transposed loners of

Prow).

Consider the correspondence f that maps each of the elements pl ∈ PL to subsets of P according to

f(pl) ≡ {p ∈ P | pl = p}

= {(Prow
i,• )

⊤ ∈ P | pl = (Prow
i,• )

⊤, for some 1 ⩽ i ⩽ V}.

Thus, f(pl) collects all the elements of P that are equal to pl. Note that the correspondence is nonempty,

as it satisfies pl ∈ f(pl) for every l = 1, . . . ,L. Note also that for any l, l ′ ∈ {1, . . . ,L}, l ̸= l ′ we have

f(pl) ∩ f(pl ′) = ∅.
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For each l = 1, . . .L, let r(l) denote a row of the matrix Prow for which

pl = (Prow
r(l),•)

⊤.

For any C satisfying (44) we must have that for every l = 1, . . . ,L

Cr(l),•P
row = p⊤

l = Prow
r(l),•. (45)

Since the tranpose of pl is a loner of Prow, then

cr(l),i ̸= 0 ⇐⇒ (Prow
i,• )

⊤ ∈ f(pl).

This means that the only rows of Prow that can be used to express pl are the elements of f(pl). Since all the

elements of f(pl) equal pl, then

Cr(l),•P
row =

 ∑
{i|cr(j),i ̸=0}

Cr(l),i

p⊤
l . (46)

Equations (45) and (46) imply ∑
{i|cr(j),i ̸=0}

cr(j),i = 1.

Noting that for any C satisfying (44) we have cji ⩽ cii, then:

1 =
∑

{i|cr(l),i ̸=0}

cr(l),i ⩽
∑

{i|cr(l),i ̸=0}

ci,i =
∑

{i|(Prow
i,• )

⊤∈f(pl)}

ci,i.

To conclude the proof simply note that because the elements of C are nonnegative

tr(C) =
V∑
j=1

cj,j ⩾
L∑

l=1

 ∑
{i|(Prow

i,• )
⊤∈f(pl)}

ci,i

 ⩾ L.

This implies that any C satisfying (44) must have tr(C) ⩾ L > K, implying CK(P) = ∅. This establishes (43).

A.2 Verification of the high-level assumption in Theorem 2.

• Term i) The characterization result in Theorem 1 readily implies that the term in i) is strictly positive for any

pair (A,W) for which the product AW does not admit an anchor-word factorization. This follows by Remark

4 and the fact that the “inf” is attained (which we established in Appendix B.2). Thus, we can write the term in

i) as a scalar f(V,D,K,AW) > 0. We note this term does not depend on the size of the documents.

• Term ii) The term ii) depends explicitly on the estimation error

P̂row − (AW)row. (47)
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The submultiplicativity of Frobenius norm implies that the term in ii) is bounded above by

C∗(V,K) · ∥P̂row − (AW)row∥, where C∗(V,K) ≡ sup
C∈CK

∥(C− IV)∥. (48)

Since the space CK is compact (see Appendix B.2), C∗(V,K) is finite. Thus, the term in ii) will be small if

P̂row is close to (AW)row with high probability.

• Term ii) Finally Lemma 4 in Appendix B.5 shows that

q∗
1−α(V,D,K,ND) ⩽ C∗(V,K) · q̃∗

1−α, (49)

where q̃∗
1−α is the “worst-case” 1−α quantile of the random variable ∥P̂row − (AW)row∥ when (A,W) ∈ Θ0.

In the remaining part of this subsection we show that under minimal regularity conditions on the parameter

space Θ one can guarantee that ∥P̂row − (AW)row∥ is small with high probability—and consequently that

both (48) and (49)are small—regardless of whether the parameters (A,W) belong to Θ0 or Θ1. An important

implication of the results in this section is that the plausibility of the high-level assumption in (26) depends

crucially on the estimator P̂row used to implement the test.

We will need some additional notation. Given the true parameters of the model, (A,W), we define the v-th

row sum of the population term-document frequency matrix as

pv(A,W) ≡
D∑

d=1

pvd,

where pvd is the (v,d)-entry of P = AW. Note that pv is used to row-normalize the matrix P. As defined

before, let Nmin to be smallest document size; that is, the minimum of {N1, . . . ,ND} and suppose that ∥ · ∥ is

the Frobenius norm.

Let P̂freq the V × D matrix with (v,d)-entry given by nvd/Nd. Let P̂row
freq the row-normalized version of

this estimator. In Appendix B.6.1 we establish the following proposition:

Proposition 2. Fix an arbitrary γ ∈ (0, 1). For any (A,W) such that pv(A,W)/D ⩾ γ/V for all v:

∥P̂row
freq − (AW)row∥ ⩽ Rγ(ϵ) ≡

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D
, (50)

with probability at least 1− ϵ.

Thus, the estimator that row-normalizes that empirical frequencies is expected to have a small estimation

error, ∥P̂row − (AW)row∥, with high probability provided

V2

Nmin ·D

is small. We next use Proposition (2) to show that the high-level condition in Theorem 2 will be verified when

Nmin is large.

Corollary 1. Fix an arbitrary γ ∈ (0, 1). Let Θ consist of all matrices (A,W) for which pv(A,W)/D ⩾
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γ/V for all v.1 Then for any parameter value (A,W) ∈ Θ1 for which P = AW does not have an anchor-

word factorization we have that, for fixed (V,K,D), the probability in (26) converges to one, as Nmin → ∞.

Moreover,

E(A,W)[ϕ
∗(Y)] → 1,

as Nmin → ∞.

Proof. Equations (48) and (49) imply that the probability in (26) is bounded below by

P(A,W)

(
inf

C∈CK

∥(C− IV)(AW)row∥ > C∗(V,K)q̃∗
1−α(V,D,K,ND) + C∗(V,K) · ∥P̂row

freq − (AW)row∥
)
.

Proposition 2 readily implies that

q̃∗
1−α ⩽ Rγ(α).

Thus, the probability in (26) can be further bounded below by the probability of the event

E1 ≡
{

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V,K)
[
Rγ(α) + ∥P̂row

freq − (AW)row∥
]}

.

The term

inf
C∈CK

∥(C− IV)(AW)row∥

does not depend on ND. Moreover, Remark 4 after Theorem 1 implies that for any AW that does not admit an

anchor-word factorization we have

inf
C∈CK

∥(C− IV)(AW)row∥ > 0.

The definition of the function Rγ(·) then implies that for any ϵ > 0 there exists Nϵ large enough such that

Nmin > Nϵ implies

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V,K)
[
Rγ(α) + Rγ(ϵ)

]
. (51)

Then, whenever Nmin > Nϵ, Equation (51) implies that event

Eϵ ≡
{
∥P̂row

freq − (AW)row∥ ⩽ Rγ(ϵ)
}

is a subset of E1, as whenever event Eϵ occurs we have

inf
C∈CK

∥(C− IV)(AW)row∥ > C∗(V,K)
[
Rγ(α) + Rγ(ϵ)

]
⩾ C∗(V,K)

[
Rγ(α) + ∥P̂row

freq − (AW)row∥.
]

Since, by definition of Rγ(ϵ) we have

P(A,W)(Eϵ) ⩾ 1− ϵ,

we conclude that the probability in (26) converges to 1 as Nmin → ∞. The last statement in the corollary

follows because E(A,W)[ϕ
∗(Y)] is lower bounded by (26).

1This rules out words in the vocabulary that occur extremely infrequently.
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A.3 Critical values based on the parametric bootstrap

For any matrix A, we use vec(A) to denote the vectorization of A. Define RND
as the V ×D diagonal matrix

with elements (
√
N1, . . . ,

√
ND) and let FND,V ,D,P denote the distribution of the random vector

vec
(
RND

(P̂row
freq − Prow)

)
. (52)

The distribution FND,V ,D,P is indexed by P since the distribution of (52) assumes that the matrix P generated

the text data. We remind the reader that the superindex “row” denotes row normalization.

Let Â0 and Ŵ0 denote estimators of the parameters (A,W) under the anchor-words assumption. As we

have done throughout the paper, let P̂0 ≡ Â0Ŵ0 denote the plug-in estimator for the population term-document

frequency matrix based on Â0 and Ŵ0. Define Y∗
d as the random vector with distribution

Y∗
d ∼ Multinomial

(
Nd, (P̂0)•,d

)
, (53)

and assume that the columns of the matrix Y∗ ≡ (Y∗
1 , . . . ,Y

∗
D) are generated independently according (53).

Let P̂∗
freq denote the frequency count associated to Y∗. That is, P̂∗

freq is the V ×D matrix with d-th column

given by Y∗
d/Nd and let F̂ND,V ,D denote the distribution of the random vector

vec
(
RND

((P̂∗
freq)

row − P̂row
0 )
)
, (54)

conditional on P̂0.

To define bootstrap consistency (which involves the asymptotic behavior of conditional distributions) we

use the bounded Lipschitz metric, see p. 394 of Dudley (2002), and also Chapter 2.2.3 and Chapter 10 in

Kosorok (2007). For any Borel distributions P and Q over a euclidean space Rs (with s ⩾ 1) define

βs (P,Q) ≡ sup
f∈BL1(s)

∣∣EP[f(X)] − EQ[f(X)]
∣∣ , (55)

where BL1(s) is the space of functions f : Rs → R such that a) supx |f(x)| < ∞ and |f(x) − f(y)| ⩽ ∥x− y∥.

We make the following high-level assumptions:

Assumption 1-Bootstrap: For any (A0,W0) ∈ Θ0

βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.

Assumption 1-Bootstrap (henceforth, A1-B) simply states that the bootstrap “consistenly estimates” the

distribution of the properly scaled, row-normalized frequency counts. While it is possible to establish Assump-

tion A1-B under more primitive conditions, we use the high-level condition to simplify the exposition of our

results. We think that stating a high-level assumption allows for a better understanding of the conditions that

are needed to ensure the validity of our suggested bootstrap procedure.
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Assumption 2-Boostrap: Let M̂ is a VD× VD random matrix such that for some matrix M

||M̂−M||F → 0

in P0 ≡ A0W0-probability, as Nmin → ∞. Then, for any ϵ > 0

P
X∼F̂ND,V,D

(∣∣∣∥M̂X∥F − ∥MX∥F
∣∣∣ > ϵ

)
→ 0 (56)

in P0 ≡ A0W0-probability, as Nmin → ∞.

Assumption 2-Bootstrap (henceforth, A2-B) simply states that if M̂ and M are close to each other in

P0-probability, then the conditional laws of ∥M̂X∥F and ∥MX∥F—where X has distribution F̂ND,V ,D—are

also close to each other in P0-probability. If the distribution of X were not indexed by both the data and the

sample size, then Assumption 2-B would be a direct consequence of the Continuous Mapping Theorem; e.g.,

Proposition 10.7 in Kosorok (2007), after verifying that X is bounded in probability. Since in our case X is the

bootstrapped distribution of the properly-scaled, row normalized frequency counts, verifying Assumption 2-B

directly requires verifying stronger assumptions.2

We now use assumptions A1-B and A2-B to establish the consistency of our bootstrap strategy. Let

GND,V ,D,P0
denote the distribution of the scalar

√
Nmin · ∥(CP0 − IV)(P̂row

freq − Prow
0 )∥F, (57)

assuming that the data was generated by a matrix P0 that satisfies the anchor-words assumption, and that CP0

is the matrix that satisfies

∥CP0P
row
0 − Prow

0 ∥ = 0.

Such a matrix exists by Theorem 1.

Let ĜND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP̂0

− IV)(P̂∗
freq)

row − P̂row
0 )∥F, (58)

conditional on P̂0.

2For example, one could check whether the expectation under the bootstrap distribution of the random variable X is bounded in
P0-probability or P0-almost surely. By Markov’s inequality, (54) is bounded above by

1

ϵ
E
X∼F̂ND,V,D

[
∥X∥F

] ∥∥∥M̂−M
∥∥∥
F
.

If the sequence of random variables E
X∼F̂ND,V,D

[
∥X∥F

]
is tight (when the data is generated by P0), then Assumption 2-B follows.

Alternatively, we could impose a tightness-like assumption not on the sequence of expectations, but on the collection of conditional
distributions of X: assume for any λNmin → ∞ as Nmin → ∞,

P
X∼F̂ND,V,D

(
∥X∥F > λNmin

)
→ 0

in P0 probability. Then the left-hand side of (54) is bounded above by

P
X∼F̂ND,V,D

(
∥X∥F > ϵ/∥M̂−M∥F

)
.
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Theorem 3. Suppose that Assumptions 1-B and 2-B hold and that

C
P̂0

− CP0 → 0

in P0 ≡ A0W0-probability. Then, for any (A0,W0) ∈ Θ0

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0

in P0 ≡ A0W0-probability, as Nmin → ∞.

Proof. Broadly speaking, the proof is based on an application of a (Lipschitz) continuous mapping theorem;

c.f., Proposition 10.7 in Kosorok (2007). In essence, we use the Lipschitz continuity of ∥ · ∥F and Assumptions

1-B and 2-B to show that the law of (57) and the (conditional) law of (58) are close to each other—with high

probability—in terms of the Bounded Lipschitz metric. We establish this proof in three steps.

STEP 1: We first establish two Lipschitz continuity properties of ∥ · ∥F that will be used in the proof. Note first

that for any matrix M the mapping

x ∈ RV 7→ ∥Mx∥F

is Lipschitz continuous with constant ∥M∥F:

∥Mx∥F − ∥My∥F = ∥M(x− y) +My∥F − ∥My∥F
⩽ ∥M(x− y)∥F
⩽ ∥M∥F∥x− y∥F.

An analogous argument shows that for any x ∈ Rv the mapping

M ∈ RV×V 7→ ∥Mx∥F

is Lipschitz continuous with Lipschitz constant ∥x∥F.

STEP 2: Let G̃ND,V ,D denote the distribution of the scalar

√
Nmin · ∥(CP0 − IV)(P̂∗

freq)
row − P̂row

0 )∥F, (59)

conditional on P̂0. The conditional distribution of (59) differs from (58) in that the former uses CP0 as opposed

to C
P̂0

.

Since the scaling matrix RND
is invertible (for it is a diagonal matrix with strictly positive diagonal ele-

ments), then √
Nmin · ∥(CP0 − IV)(P̂row

freq − Prow
0 )∥F = ∥M̃ND,P0

RND
(P̂row

freq − Prow
0 )∥F,

where M̃ND,P0
≡ (CP0 − IV)(

√
NminR

−1
ND

). Moreover, because the Frobenius norm of a matrix is the same as

the Frobenius norm of its vectorization, then

∥M̃ND,P0
RND

(P̂row
freq − Prow

0 )∥F =

∥∥∥∥MND,P0
vec
(
RND

(P̂row
freq − Prow

0 )
)∥∥∥∥

F

,

12



where MND,P0
≡
(
ID ⊗ M̃ND,P0

)
. Therefore,

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼FND,V,D,A0W0
[f(∥MND,P0

X∥F)] − E
X∼F̂ND,V,D

[f(∥MND,P0
X∥F)]

∣∣∣∣ .
By Step 1 the function ∥MND,P0

X∥ is Lipschitz with constant ∥MND,P0
X∥F. Therefore, if we use BLc(s)

to denote the space of Lipschitz functions f : Rs → R such that a) supx∈R2 |f(x)| < ∞ and b) |f(x) − f(y)| ⩽

c∥x− y∥ then

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
is smaller than or equal to

sup
f∈BL∥∥∥∥MND,P0

∥∥∥∥
F

(V·D)

∣∣∣∣EX∼FND,V,D,A0W0
[f(X)] − E

X∼F̂ND,V,D
[f(X)]

∣∣∣∣ ,
which equals ∥∥∥MND,P0

∥∥∥
F
βV·D

(
FND,V ,D,A0W0

, F̂ND,V ,D

)
.

Since, by definition

MND,P0
=
(
ID ⊗ (CP0 − IV)(

√
NminR

−1
ND

)
)

and the diagonal elements of (
√
NminR

−1
ND

) equal
√
Nmin/Nd < 1, then ∥MND,P0

∥F is a bounded sequence

as Nmin → ∞. From Assumption 1-B, we conclude that

β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.

STEP 3: To finish the proof it suffices to show that

β1

(
G̃ND,V ,D , ĜND,V ,D

)
→ 0

in P0 ≡ A0W0 probability.

By definition

β1

(
G̃ND,V ,D , ĜND,V ,D

)
equals

sup
f∈BL1(1)

∣∣∣∣EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − E
X∼F̂ND,V,D

[f(∥M̂ND,P0
X∥F)]

∣∣∣∣ ,
where

M̂ND,P0
≡
(
ID ⊗ (C

P̂0
− IV)(

√
NminR

−1
ND

)
)
,
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and M is defined as in Step 2. For any f ∈ BL1(1), write∣∣∣∣ EX∼F̂ND,V,D
[f(∥MND,P0

X∥F)] − E
X∼F̂ND,V,D

[f(∥M̂ND,P0
X∥F)]

∣∣∣∣
as ∣∣∣∣ EX∼F̂ND,V,D

[
f(∥MND,P0

X∥F) − f(∥M̂ND,P0
X∥F)

] ∣∣∣∣ ,
which is bounded above by

E
X∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F) − f(∥M̂ND,P0

X∥F)
)∣∣∣∣ 1{∣∣∣∥MND,P0

X∥F − ∥M̂ND,P0
X∥F

∣∣∣ > ϵ

} ]
, (60)

plus

E
X∼F̂ND,V,D

[ ∣∣∣∣(f(∥MND,P0
X∥F) − f(∥M̂ND,P0

X∥F)
)∣∣∣∣ 1{∣∣∣∥MND,P0

X∥F − ∥M̂ND,P0
X∥F

∣∣∣ ⩽ ϵ

} ]
, (61)

for any ϵ > 0. Note that in the expectations above M̂ is non-random, since we are conditioning on P̂0. The

term (60) is bounded above by

2 · E
X∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
.

Since f ∈ BL1(s), the term (61) is bounded above by

E
X∼F̂ND,V,D

[∣∣∣∣∥∥∥MND,P0
X
∥∥∥
F
−
∥∥∥M̂ND,P0

X
∥∥∥
F

∣∣∣∣ · 1{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ ⩽ ϵ

}]
.

Consequently, the term (61) is bounded above by ϵ.

To finish the proof, note that since C
P̂0

converges to CP0 in P0 ≡ A0W0 probability, then∥∥∥M̂ND,P0
−MND,P0

∥∥∥
F
→ 0

in P0 ≡ A0W0 probability. Assumption 2-B then implies

E
X∼F̂ND,V,D

[
1

{∣∣∣∥MND,P0
X∥F − ∥M̂ND,P0

X∥F
∣∣∣ > ϵ

}]
→ 0

in P0 ≡ A0W0-probability.

From Steps 1,2, and 3 we conclude that since

β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
⩽ β1

(
GND,V ,D,A0W0

, G̃ND,V ,D

)
+ β1

(
G̃ND,V ,D , ĜND,V ,D

)
,

then
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β1

(
GND,V ,D,A0W0

, ĜND,V ,D

)
→ 0.

A.4 Proof of Remark 4

Claim: Let ∥ · ∥ be an arbitrary matrix norm. For any column-stochastic matrix P of nonnegative rank K we

have

CK(P) ≡ CK ∩
{
C ∈ RV×V | CProw = Prow

}
̸= ∅

if and only if

min
C∈CK

∥CProw − Prow∥ = 0.

Proof. We first show the “ =⇒ ” direction. Since CK(P) ̸= ∅, then there exists C∗ ∈ CK such that C∗Prow =

Prow. Since

0 ⩽ inf
C∈CK

∥CProw − Prow∥ ⩽ ∥C∗Prow − Prow∥ = 0,

then

inf
C∈CK

∥CProw − Prow∥ = ∥C∗Prow − Prow∥ = 0.

Thus, the infimum is attained and

min
C∈CK

∥CProw − Prow∥ = 0.

For the “ ⇐= ” we note that if

min
C∈CK

∥CProw − Prow∥ = 0,

then, by definition, there exists C∗ ∈ CK such that

∥C∗Prow − Prow∥ = 0.

But since ∥ · ∥ is a norm, this implies C∗Prow − Prow = 0.
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B Supplementary Theoretical Results

B.1 Proof of Remark 5

Let P,Q be column-stochastic matrices of dimension V×D. Define the total-variation distance between P and

Q as

∥P −Q∥TV =
1

2

V∑
v=1

D∑
d=1

|pv,d − qv,d|.

This extends the typical definition of the total-variation distance for discrete distributions; see p. 48, Proposi-

tion 4.2 in Levin & Peres (2017).

Claim: Suppose that P is a column-stochastic matrix of nonnegative rank K ⩽ min{V,D} that a) does not

admit an anchor-word factorization in the sense of Definition 2, and b) there exists some ϵ > 0

pv ≡
D∑

d=1

pv,d > ϵ, ∀ v = 1, . . . ,V.

Then, there is no sequence of matrices {Pi}i∈N for which Pi = AiWi, (Ai,Wi) ∈ Θ0 and ∥P − Pi∥TV → 0.

Proof. We establish this result by contradiction. Suppose there is a sequence {Pi}i∈N for which Pi = AiWi,

(Ai,Wi) ∈ Θ0 and ∥P − Pi∥TV → 0. Theorem 1 shows that for each i ∈ N, there exists a matrix Ci ∈ CK

such that

CiP
row
i = Prow

i .

Let ∥ · ∥ denote the Frobenius norm. For any Ci satisfyng CPi = Pi we have

∥CiP
row − Prow∥ = ∥CiP

row − CiP
row
i + CiP

row
i − Prow

i + Prow
i − Prow∥,

⩽ ∥Ci(P
row − Prow

i )∥+ ∥CiP
row
i − Prow

i ∥+ ∥Prow
i − Prow∥,

= ∥Ci(P
row − Prow

i )∥+ ∥Prow
i − Prow∥,

⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥.

Consequently,

inf
C∈CK

∥CProw − Prow∥ ⩽
(
∥Ci∥+ 1

)
· ∥Prow

i − Prow∥ (62)

for every i ∈ N. Because CK is bounded (as the matrices C ∈ CK have elements in [0, 1]), then the sequence

{∥Ci∥}i∈N is bounded. Moreover,

∥Prow − Prow
i ∥ =

√√√√ D∑
d=1

V∑
v=1

(prow
v,d − prow

i,(v,d))
2

⩽
D∑

d=1

V∑
v=1

|prow
v,d − prow

i,(v,d))|

=

D∑
d=1

V∑
v=1

∣∣∣pv,d

pv
−

pi,(v,d)

piv

∣∣∣,
16



where pv and piv represent the row sums of P and Pi, respectively. Since∣∣∣pv,d

pv
−

pi,(v,d)

piv

∣∣∣ =
∣∣∣pv,d

pv
−

pi,(v,d)

pv
+

pi,(v,d)

pv
−

pi,(v,d)

piv

∣∣∣,
then

∥Prow − Prow
i ∥ ⩽

D∑
d=1

V∑
v=1

1

pv
· |pv,d − pi,(v,d)|

+

D∑
d=1

V∑
v=1

pi,(v,d)

pv · piv
· |piv − pv|.

Since ∥Pi − P∥TV → 0 implies that |pi,(v,d) − pv,d| → 0 for all v = 1, . . . ,V and d = 1, . . . ,D then

∥Prow − Prow
i ∥ → 0,

and, because of (62)

inf
C∈CK

∥CProw − Prow∥ = 0.

This implies, by Theorem 1 that P admits an anchor-word factorization. A contradition.

B.2 Proof that infC∈CK
∥CP̂row − P̂row∥ is always attained

Claim: Let ∥ · ∥ denote the Frobenius norm. For any column-stochastic, row normalized matrix Prow,

inf
C∈CK

∥CProw − Prow∥ = min
C∈CK

∥CProw − Prow∥.

Proof. We want to show the minimum of ||CProw − Prow|| is attainable in CK when the norm is Frobenius. By

the extreme value theorem—e.g., Munkres (2000) Theorem 27.4 on page 174—it is sufficient to show function

fP(C) ≡ ∥CProw − Prow∥ is continuous in C over CK and that CK is compact. For the rest of the proof, we

work with the topology induced by the Euclidean metric in RV2
, and the topology over RV×V induced by the

Frobenius norm.

First, we show that fP(C) is continuous. For any ε > 0, there exists δ = ε/||Prow|| such that if ||C−C0|| < δ,

then

| ∥CProw − Prow∥− ∥C0P
row − Prow∥ |⩽ ∥CProw − C0P

row∥ ⩽ ∥C− C0∥ · ∥Prow∥ < ε.

The first inequality holds due to the reverse triangle inequality and the second inequality comes from the

submultiplicativity of the Frobenius norm; see Horn & Johnson (2012) page 340.

Second, we show that the set CK is compact. It is sufficient to show CK is closed since it is a subset

of a compact space [0, 1]K×K; see Munkres (2000) Theorem 26.2 on page 165. For the compactness of the

space [0, 1]K×K, we rely on facts that the space [0, 1]K
2

is compact and the image of a compact space under a

continuous map is compact—see, for example, Munkres (2000) Theorem 26.5 on page 166—where we depend

on the continuous bijection hij(C̃) = C̃V(i−1)+j for any C̃ ∈ [0, 1]K
2
.

For a sequence {Cn ∈ CK}n∈N that converges, we want to show its limit C is in CK. Notice the ma-
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trix converges in the Frobenius norm is equivalent to entry-wise convergences in absolute values. That is, if

limn→∞Cn = C, for any ε > 0, there exists N such that if n > N, |Cn,ij − Ci,j| ⩽ ||Cn − C|| ⩽ ε.

Also, if limn→∞Cn,ij = Cij for all i and j, for any ε/V > 0, there exists {Nij} such that if n > sup{Nij},

||Cn − C|| ⩽
√

V2( ε
V )2 = ε. The last inequality is from the definition of the Frobenius norm.

Finally, by the definition of the convergence, the diagonal elements are bounded by 0 and 1, and the off-

diagonal elements also share the same bounds because if Cn,ij ⩽ Cjj, limCn,ij ⩽ Cjj. Therefore, C is in CK

and CK is closed.

B.3 An anchor-word factorization always exists when K = 2 ⩽ min{V ,D}

B.3.1 Proof using condition (19) of Theorem 1

Let P be a nonnegative column-stochastic matrix of rank K = 2 ⩽ min{V,D}. Thomas (1974) has shown that

every rank two nonnegative matrix admits a nonnegative matrix factorization. Let (A,W) be the nonnegative

matrices in R2×V × R2×D that factorize P; that is P = AW.

Without loss of generality we can assume that A and W are column stochastic (that is, their columns add up

to one). Also, suppose that the first term in the vocabulary solves the problem c1 ≡ minv∈V av2/av1. That is,

we assume that the first term of the vocabulary receives the lowest possible probability under topic two, relative

to the probability that the same term receives under topic one. Analogously, suppose that the second term in the

vocabulary solves c2 ≡ minv∈V av1/av2. Note that if A were not organized in such a way, we could always

permute the rows of A to achieve this structure. Note also that the ratios involving av1 and av2 are always well

defined because none of the rows of P equal zero.

We will make use of the 2× 2 matrix

T ≡

 1
1−c2

− c1
1−c1

−c2
1−c2

1
1−c1

 ,

where c1 and c2 are defined in the previous paragraph. Because A has rank two, both c1, c2 ∈ (0, 1). This

implies that T is well defined; that its determinant is strictly positive, and that T−1 is a column-stochastic

matrix.

In a slight abuse of notation, write A as the following block matrix

A =


A∗︸︷︷︸
2×2

Ã︸︷︷︸
V−2×2

 .

Consider then the V × V matrix given by

C ≡

 I2 02×V−2

(RÃW)−1ÃTRT−1W 0V−2×V−2

 . (63)

We will show that this matrix satisfies the necessary and sufficient condition for anchor-word factorization in

Theorem 1.
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We first show that C is an element of the set C2 defined in Equation (17). Note first that Tr(C) = 2 and that

the diagonal elements of the matrix C are either 0 or 1. Thus, we only need to show that the elements of the

matrix

(RÃW)−1ÃTRT−1W (64)

are nonnegative and bounded above by one.

We first show that the elements of (64) are nonnegative. Note that ÃW (which corresponds to the lower

V − 2 × D block of P) is a nonnegative matrix, which implies RÃW is nonnegative. Note also that because

T−1 is column stochastic, then T−1W is a column-stochastic matrix. Finally, since Ã is column stochastic and

c1, c2 ∈ (0, 1), it follows that ÃT is nonnegative.

We then show that the elements of (64) are bounded above by one. Since, by definition, RM is the diagonal

matrix that contains the row sums of a matrix M, algebra shows that

RÃW = R(ÃT)(T−1W) = RÃTRT−1W
.

Thus, the elements of the V − 2× 2 matrix (64) are bounded above by one. This shows that C is an element of

the set C2.

Finally, we show that C satisfies the equation CProw = Prow. Using the block matrix representation of A

Prow =

(A∗W)row(
ÃW

)row

 .

The definition of C in Equation (63) implies

CProw =

 (A∗W)row

(RÃW)−1ÃTRT−1W (A∗W)row

 ,

=

 (A∗W)row

(RÃW)−1ÃTRT−1W

(
(A∗T)

(
T−1W

))row

 .

By construction, A∗T is a diagonal matrix, which implies(
(A∗T)

(
T−1W

))row

=

((
T−1W

))row

= RT−1WT−1W.

Thus, we conclude that CProw = Prow, and thus C ∈ C2(P). Theorem 1 thus implies that any matrix P of rank

K = 2 admits an anchor-word factorization.

B.3.2 Explicit anchor-word factorization when K = 2 ⩽ min{V ,D}

The proof of Theorem 1 gives a simple formula to obtain the anchor-word factorization of P from C ∈ C2(P).

In particular, if we start out with the factors (A,W) that were used in the previous subsection, the proof of
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Theorem 1 implies that the column-normalized version of the V × K matrix IK
ÃTRT−1WR−1

A∗W

 (65)

provides an anchor-word factorization of P. Since A∗T is diagonal and column stochastic, then the matrix in

(65) equals A∗T

ÃT

 (A∗T)−1 ,

where we have used

RA∗W = RA∗TT−1W = A∗TRT−1W .

Thus,

A0 =

A∗T

ÃT


and W0 ≡ T−1W provide an anchor-word factorization of P.

B.4 An Anchor-word factorization does not always exist when V = 4, K =

D = 3

B.4.1 Example

In this section we show that any matrix P of the form

P =


α 0 0

0 γ 0

0 1− γ 1− β

1− α 0 β

 ,

for α,β,γ ∈ (0, 1) does not admit an anchor-word factorization.

The row-normalized version of P is given by:

Prow =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β 0 β

1−α+β

 .

We define the set C̃K to be the set of V × V matrices of the formIK 0K×V−K

M 0V−K×K

 ,
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where M ⩾ 0 is a row-normalized matrix (with rows different from zero, so that row-normalization is always

well defined). From Lemma 1, we want to show there does not exist C ∈ C̃K and a row permutation matrix Π

such that CΠProw = ΠProw.

Since K = 3 we can argue that it is only relevant to focus on four classes of permutations (which are indexed

by the row of Prow that is placed at the bottom of the permuted matrix). Without loss of generality, we can focus

on

Prow
1 =


1−α

1−α+β 0 β
1−α+β

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1 0 0

 ,

Prow
2 =


1 0 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β 0 β

1−α+β

0 1 0

 ,

Prow
3 =


1 0 0

0 1 0
1−α

1−α+β 0 β
1−α+β

0 1−γ
2−γ−β

1−β
2−γ−β

 ,

Prow
4 =


1 0 0

0 1 0

0 1−γ
2−γ−β

1−β
2−γ−β

1−α
1−α+β 0 β

1−α+β

 .

Note there is no C ∈ C̃K such that CProw
i = Prow

i for i = 1, 2, since this would require some elements of M

to be strictly above one.

Consider now the matrices Prow
3 and Prow

4 . We can focus on Prow
3 , since the argument for the other matrix is

entirely analogous. Let the elements of M, which is a 1 × 3 matrix, be denoted as [m1,m2,m3]. In order for

the first element of the last row of Prow
3 (which equals zero) to be a convex combination of the first three rows

it is necessary to have m1 = m3 = 0. However, this implies that the last element of the fourth row of Prow
3

(which equals 1− β/2− γ− β) cannot be obtained as a convex combination of the first three rows, whenever

β ∈ (0, 1). Therefore there does not exist C ∈ C̃K such that CProw
3 = Prow

3 . Since the argument for Prow
4 is

analogous, we conclude that the anchor-word factorization does not exist for P.

B.5 Upper bound for q∗
1−α(V ,K,D,ND)

Lemma 4. Let ∥ · ∥ denote the Frobenius norm. For any α ∈ (0, 1)

q∗
1−α(V,D,K,ND) ⩽ sup

C∈CK

∥C− IV∥ · q̃∗
1−α(V,D,K,ND), (66)
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where

q̃∗
1−α(V,D,K,ND) = sup

(A,W)∈Θ0

q̃1−α(AW,V,D,K,ND)

and

q̃1−α(AW,V,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − (AW)row∥ ⩽ q

)
⩾ 1− α.

}
.

Proof. By definition—see Section 3.2— q1−α(AW,V,D,K,ND) is the 1 − α quantile of the test statistic

T(Y) under the distribution P = AW, (A,W) ∈ Θ0. Thus:

q1−α(AW,V,D,K,ND) = inf

{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
.

Let CP ∈ CK be the matrix for which CProw − (AW)row = 0 (such a matrix exists by Theorem 1). Since the

test statistic T(Y) equals minC∈CK
∥CP̂row − P̂row∥, it follows that

T(Y) ⩽ ∥CPP̂
row − P̂row∥

= ∥CPP̂
row − CPP

row + CPP
row − Prow + Prow − P̂row∥

= ∥ (CP − IV) (P̂row − Prow)∥

⩽ sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥,

where the last inequality follows from the submultiplicativity of Frobenius norm. This inequality implies that

Q1 ≡

q ∈ R+

∣∣∣∣∣ PAW

(
sup
C∈CK

∥C− IV∥ · ∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α


is a subset of

Q0 ≡
{
q ∈ R+

∣∣∣ PAW

(
T(Y) < q

)
⩾ 1− α

}
.

Therefore,

q1−α(AW,V,D,K,ND) = infQ0 ⩽ infQ1. (67)

Define C∗(V,K) ≡ supC∈CK
∥C− IV∥. We want to show that

infQ1 ⩽ C∗(V,K) · q̃1−α(AW,V,D,K,ND).

Let

Q2 ≡
{
q ∈ R+

∣∣∣ PAW

(
∥P̂row − Prow∥ ⩽ q

)
⩾ 1− α.

}
,

and note that, by definition,

q̃1−α(AW,V,D,K,ND) = infQ2.

By definition of infimum, there exists a sequence {qn}n∈N ⊆ Q2 such that

lim
n→∞qn = q̃1−α(AW,V,D,K,ND). (68)
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For each qn we have that (
C∗(V,K) · qn

)
∈ Q1.

Consequently,

infQ1 ⩽ C∗(V,K) · qn

for all n ∈ N. We thus conclude by (68) that

infQ1 ⩽ C∗(V,K) · q̃1−α(AW,V,D,K,ND)

and by (67) that

q1−α(AW,V,D,K,ND) ⩽ C∗(V,K) · q̃1−α(AW,V,D,K,ND).

Taking the supremum on both sides over (A,W) ∈ Θ0 gives the desired result.

B.6 Estimation error of different estimators

In this section we discuss two alternative estimators for Prow. Here is a description of the estimators and the

results we derive:

1. Nuclear-Norm Minimizer: Let P̂nuc be the estimator suggested by McRae & Davenport (2021), Section

2.3, Theorem 2.2, p. 712. The following proposition follows from their Theorem 2.2:

Proposition 3. Let 0 < γ < 1 be an arbitrary scalar. For any (A,W) such that pv(A,W)/D ⩾ γ/V

∥P̂row
nuc − (AW)row∥F ⩽ 4

√
16

γ2
·
V3/2 · ln

(
(D+ V)/ϵ

)
· K

Nmin
(69)

with probability at least 1− ϵ.

2. Minimax Estimator for the columns: Let P̂min the V ×D matrix with (v,d)-entry given by (
√
Nd/V +

nvd)/(
√
Nd +Nd). Let P̂row

min the row-normalized version of this estimator. In Section B.6.2 below we

establish the following proposition:

Proposition 4. Let 0 < γ < 1 be arbitrary scalars. For any (A,W) such that pv(A,W)/D ⩾ γ/V

∥P̂row
min − (AW)row∥F ⩽

√√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

(70)

with probability at least 1− ϵ.

The estimator that row-normalizes that minimax estimator is expected to satisfy the high-level assumption

in (26) provided
V2

Nmin + 2N
1/2
min + 1

is small. Here, we rely on the same technique as Proposition 3 to derive the rate. We can also provide
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better rates with an order of
V2

D · (Nmin + 2N
1/2
min + 1)

with other assumptions about probability design and other techniques.

Outline for this section: Let P̂ be an arbitrary estimator of the population term-document frequency matrix,

P. Just as we did in the main body of the paper, define P̂row ≡ R−1

P̂
P̂ and Prow ≡ R−1

P P. We establish a series

of results that will allow us to provide finite-sample bounds for ||P̂row − Prow||F.

Lemma 5 below shows that in order to upper-bound the estimation error ||P̂row −Prow||F we can analyze the

terms

||R−1
P (P − P̂)||F (71)

and

||(R−1

P̂
− R−1

P )P̂||F. (72)

Lemma 6 uses Markov’s inequality to provide an upper bound for the term in (71). Lemma 7 provides an upper

bound for the term in (72). The bounds do not depend on the specific form of P̂ as long as the second moments

of the estimator exist.

Lemma 5. If ||R−1
P (P − P̂)||F ⩽ δ1 with probability at least 1 − ϵ/2, and ||(R−1

P̂
− R−1

P )P̂||F ⩽ δ2 with

probability at least 1− ϵ/2, then with probability at least 1− ϵ,

||P̂row − Prow||F ⩽ 2max{δ1, δ2}.

Proof. Algebra shows that

||P̂δrow − Prow||F = ||R−1

P̂
P̂ − R−1

P P||F

= ||R−1

P̂
P̂ − R−1

P P̂ + R−1
P P̂ − R−1

P P||F

⩽ ||R−1

P̂
P̂ − R−1

P P̂||F + ||R−1
P P̂ − R−1

P P||F

= ||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F,

where the inequality comes from the triangle inequality.

The inequality above implies that for any constant c we have

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F + ||(R−1

P̂
− R−1

P )P̂||F > c).

Moreover, the right-hand side of the equation above is upper-bounded by

P(||R−1
P (P̂ − P)||F > c/2 or ||(R−1

P̂
− R−1

P )P̂||F > c/2).

The subadditivity of probability measures then implies

P(||P̂row − Prow||F > c) ⩽P(||R−1
P (P̂ − P)||F > c/2)

+ P(||(R−1

P̂
− R−1

P )P̂||F > c/2).
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Take c = 2max{δ1, δ2} and note that

P(||R−1
P (P̂ − P)||F > max{δ1, δ2}) ⩽ P(||R−1

P (P̂ − P)||F > δ1) < ϵ/2,

and analogously P((R−1

P̂
− R−1

P )P̂ > max{δ1, δ2}) < ϵ/2.

Lemma 6. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then with

probability at least 1− ϵ

||R−1
P (P̂ − P)||F ⩽

1

pvmin

√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
ϵ

,

where the expectation E is taken under the true data generating process P.

Proof. The definition of Frobenius norm implies that for any x > 0

P(||R−1
P (P̂ − P)||F > x) = P

∑
v

∑
d

1

p2
v

(pvd − p̂vd)
2 > x2


⩽ P

 1

p2
vmin

∑
v

∑
d

(pvd − p̂vd)
2 > x2


⩽

∑
v

∑
d E(pvd − p̂vd)

2

p2
vminx

2
,

where the last step follows from Markov’s inequality. Taking x to be√∑V
v=1

∑D
d=1 E

[
(p̂vd − pvd)2

]
p2
vminϵ

completes the proof.

Lemma 7. Suppose that the second moments of p̂vd exist for v = 1, ...,V and d = 1, ...,D. Then with

probability at least 1− ϵ

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√∑V
v=1 E

[
(pv − p̂v)2

]
ϵ

where the expectation E is taken under the true data generating process P, and pv ≡
∑d

d=1 pvd, p̂v ≡∑d
d=1 p̂vd.

Proof.

||(R−1

P̂
− R−1

P )P̂||F =

∑
v

∑
d

(
1

pv
−

1

p̂v
)2p̂2

vd

1/2

=

∑
v

∑
d

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
vd

1/2
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=

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

∑
d

p̂2
vd

1/2

⩽

∑
v

(p̂v − pv)
2

p2
vp̂

2
v

p̂2
v

1/2

⩽

 1

p2
vmin

∑
v

(p̂v − pv)
2

1/2

.

The inequality above holds since (
∑

d p̂2
vd)

1/2 ⩽
∑

d p̂vd = p̂v.

Then, for any x > 0

P(||(R−1

P̂
− R−1

P )P̂||F > x) ⩽ P

 1

p2
vmin

∑
v

(p̂v − pv)
2 > x2


⩽

∑
v E((p̂v − pv)

2)

p2
vminx

2
,

where the last line follows by Markov’s inequality. Taking

x =
1

pvmin

√∑
v E(pv − p̂v)2

ϵ
,

yields the desired result.

B.6.1 Estimation error of Prow
freq

Proof of Proposition 2. In a slight abuse of notation, let P̂ denote the V ×D matrix with (v,d)-entry given by

nvd/Nd. Let P̂row the row-normalized version of this estimator.

Note that ∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

pvd(1− pvd)

Nd

⩽
∑
v

∑
d

pvd(1− pvd)

Nmin

=
∑
d

1−
∑

v p
2
vd

Nmin

⩽
D(1− 1

V )

Nmin
.

The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The second equality

holds since the
∑

v pvd = 1. The second inequality comes from the fact that

min
p1d,...,pVd

∑
v

p2
vd s.t.

∑
v

pvd = 1
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equals 1/V . Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√
2D(1− 1

V )

Nminϵ
.

Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√
2V2(1− 1

V )

γ2DNminϵ
.

Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

=
1

pvmin

√
2
∑

v

∑
d E

[
(p̂vd − pvd)

]2
ϵ

=
1

pvmin

√
2D(1− 1

V )

Nminϵ

⩽

√
2V2(1− 1

V )

γ2DNminϵ
,

where the second equality holds because the estimators p̂vd are unbiased and they are also independent across

documents.

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the empirical frequencies then

∥P̂row − (AW)row∥F ⩽

√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin ·D

with probability at least 1− ϵ.

B.6.2 Estimation error of Prow
min

Proof of Proposition 4. In a slight abuse of notation, let P̂ denote the V ×D matrix with (v,d)-entry given by

(
√
Nd/V + nvd)/(

√
Nd +Nd). Let P̂row be the row-normalized version of this estimator.

As above, we show that

∑
v

∑
d

E
[
(p̂vd − pvd)

]2
=

∑
v

∑
d

Ndpvd − 2Ndpvd

V + Nd

V2

(
√
Nd +Nd)2

⩽
∑
v

∑
d

pvd − 2pvd

V + 1
V2

Nmin + 2N
1/2
min + 1

=
∑
d

∑
v

pvd − 2pvd

V + 1
V2

Nmin + 2N
1/2
min + 1

=
D(1− 1

V )

Nmin + 2N
1/2
min + 1

.

27



The first equality holds because nvd is a binomial distribution with parameter Nd and pvd. The third equality

holds since the
∑

v pvd = 1.

Therefore, by Lemma 6 with probability at least 1− ϵ/2

||R−1
P (P − P̂)||F ⩽

1

pvmin

√√√√ 2D(1− 1
V )

(Nmin + 2N
1/2
min + 1)ϵ

.

Moreover, since by assumption, pvmin/D ⩾ γ/V , we have that

||R−1
P (P − P̂)||F ⩽

√√√√ 2V2(1− 1
V )

γ2D(Nmin + 2N
1/2
min + 1)ϵ

.

Note that

∑
v

E

∑
d

(p̂vd − pvd)
2

 =
∑
v

∑
d

E(p̂vd − pvd)
2 +

∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′).

We use the bound for the first term again and for the second term, we know

E(p̂vd − pvd) =
1
V − pvd√
Nd + 1

.

So∑
v

∑
d̸=d ′

E(p̂vd − pvd)E(p̂vd ′ − pvd ′) =
∑
v

∑
d̸=d ′

1

(
√
Nd + 1)2

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)

=
∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

(
1− V(pvd + pvd ′)

V2
+ pvdpvd ′

)

=
∑
d̸=d ′

1

(
√
Nd + 1)2

∑
v

pvdpvd ′ −
1

V


⩽

∑
d̸=d ′

1

(
√
Nd + 1)2

(
1−

1

V

)

⩽
D2
(
1− 1

V

)
Nmin + 2N

1/2
min + 1

.

The third equality holds since the
∑

v pvd = 1. The first inequality comes from the fact that

max
∑
v

pvdpvd ′ s.t.
∑
v

pvj = 1 and pvj ⩾ 0 for j = d or d ′

equals to 1 by Kuhn-Tucker conditions. Therefore,

∑
v

E

∑
d

(p̂vd − pvd)
2

 ⩽
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

.
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Lemma 7 implies that with probability at least 1− ϵ/2

||(R−1

P̂
− R−1

P )P̂||F ⩽
1

pvmin

√
2
∑

v E(pv − p̂v)2

ϵ

⩽
1

pvmin

√√√√√2
D(D+ 1)

(
1− 1

V

)
Nmin + 2N

1/2
min + 1

⩽

√√√√ 2(D+ 1)V2(1− 1
V )

γ2D
(
Nmin + 2N

1/2
min + 1

)
ϵ
.

Finally, Lemma 5, implies that if P̂row is based on the row-normalization of the minimax estimator then

∥P̂row − (AW)row∥F ⩽

√√√√√8
(
1− 1

V

)
γ2 · ϵ

· V2

Nmin + 2N
1/2
min + 1

with probability at least 1− ϵ.
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C Additional Results

C.1 Likelihood of an anchor-word factorization under sparsity

In this section, we study how likely it is that a randomly generated population term-document frequency matrix

admits a separable factorization as we vary the degree of sparsity in the word-topic matrix A. To do so, we

again start by creating the columns of both A and W as draws from independent Dirichlet distributions with

α = 1. We then randomly set ⌊βV⌋ entries in each column of A equal to zero, where β ∈ [0, 1) and ⌊x⌋ denotes

the integer part of x.3 For this exercise, we fix K = 3, V = 100 and D = 100. This is depicted in Figure 11.

With β = 0, our DGP is identical to the quadrant of Figure 3 that corresponds to K = 3 and V = 100. In line

Figure 11: Fraction of realizations with an anchor-word factorization as we vary the amount of sparsity in A. Non-zero
entries of the word-topic matrix A have a Dirichlet distribution with concentration parameter α = 1. Figure based on 200
simulations.

with Figure 3a, we see that no anchor-word factorization exists across realizations when there is no sparsity.

However, as the amount of sparsity in A increases, an anchor-word factorization is increasingly likely to exist,

and for values of β > 0.2 an anchor-word factorization exists in almost all realizations.

3We disregard realizations of A in which entire rows are equal to zero. Effectively, these are realizations with a smaller value of V
and less sparsity.

30



C.2 Alternative estimators for the topics in the FOMC1 corpus.
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Figure 12: Arora, Ge & Moitra (2012)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of words
of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top 5 terms with
largest weights are colored in orange. The estimated anchor-word for each topic is in the caption.
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Figure 13: Ke & Wang (2022)’s estimator of A in the FOMC1 corpus. Each panel shows the word cloud of words of a
topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and the top 5 terms with largest
weights are colored in orange.
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Figure 14: Latent Dirichlet Allocation estimator of A in the FOMC1 corpus with uniform priors. Each panel shows the
word cloud of words of a topic (column in A matrix), where the font size is proportional to term’s weight in the topic, and
the top 5 terms with largest weights are colored in orange.
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