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Abstract

We develop a clustering-based algorithm to detect loan applicants who submit multiple

applications (“cross-applicants”) in a loan-level dataset without personal identifiers. A

key innovation of our approach is a novel evaluation method that does not require

labeled training data, allowing us to optimize the tuning parameters of our machine

learning algorithm. By applying this methodology to Home Mortgage Disclosure Act

(HMDA) data, we create a unique dataset that consolidates mortgage applications to

the individual applicant level across the United States. Our preferred specification

identifies cross-applicants with 93% precision.
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1 Introduction

The Home Mortgage Disclosure Act (HMDA) data is a leading example of a consumer finance

dataset at the account level that does not include person-level identifiers: it contains the

near-universe of all mortgage applications in the US, but does not contain an applicant

identifier that allows linking multiple applications to the same applicant. We present a

novel approach to detect “cross-applicants” – individuals who submit multiple mortgage

applications – using a clustering-based algorithm applied to loan-level data.

In a nutshell, our approach works as follows. Using application level mortgage data from

a confidential version of the widely known HMDA dataset1, we first split the data into par-

titions, characterized by the distinct outcomes of nine categorical variables, such as census

tract of the property or the race of an applicant. We then apply a clustering algorithm to

further break down these partitions into clusters. These clusters have the property that all

applications within one cluster are “close” in terms of a number of continuous attributes such

as application date or reported income. This is motivated by the fact that multiple applica-

tions submitted by the same individual for the same property may differ only slightly. For

example, an applicant may submit two otherwise identical applications to different lenders

on subsequent days.

Figure 1 illustrates our approach. Here, we have created a partition of size four using

categorical variables in a first step. In the second step, we then use a single continuous

variable, for instance application date, to further split the partition into three clusters.

The first two clusters consist of single applications (reflecting two applicants), while the

third cluster consists of two applications (reflecting a third applicant). Here, the last two

applications are assigned to the same cluster because they are filed within a short time span.

At this point, all applications in a given cluster are “near-identical.” In both simulations

1We discuss our data in more detail in Section 4.
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Figure 1: Illustration of clustering algorithm in a hypothetical univariate example for a partition
with four applications, where the only clustering variable is “Time.” The last two applications are
filed within a short time span, and thus assigned to the same cluster.

and our empirical application, we provide evidence that clusters constructed this way indeed

mostly represent single individuals: The vast majority of clusters include only applications

from the same applicant, and thus represent individuals submitting multiple (near-identical)

mortgage applications for the same property.

The contributions of this paper are twofold. First, we develop a methodological frame-

work that allows us to identify and group loan applications submitted by the same individual

in large-scale, anonymized datasets. This framework is flexible and can be applied to a variety

of datasets where individual-level identifiers are absent. We implement our method using a

state-of-the-art agglomerative clustering algorithm, making it feasible to apply this method

to large datasets with millions of observations. Crucially, we develop a novel method to

measure the quality of the proposed algorithm that does not require labeled training data.

To do this, we exploit the fact that consumers can take out only a single first-lien mort-

gage for a given property. This insight further allows us to select the tuning parameters of

our algorithm to optimize its performance. We validate our approach through simulation,

demonstrating its effectiveness in identifying cross-applicants in simulated data.

Second, we then apply our method to the Home Mortgage Disclosure Act (HMDA) data,

creating a unique dataset that consolidates mortgage applications at the individual applicant

level across the country. Our preferred specification of the algorithm demonstrates a high

level of precision, successfully identifying cross-applicants with an estimated 93% precision.

This level of performance underscores the potential of our approach.
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The paper proceeds as follows. Section 2 describes our clustering approach in more detail.

We then demonstrate the empirical performance of our approach in simulated data in Section

3. In Section 4, we apply our approach to confidential HMDA and validate its performance.

Section 5 concludes.

2 Identifying Cross-Applicants

2.1 Setup

We assume access to a loan-level dataset without personal identifiers. Specifically, we will

frame our following discussion around a dataset of mortgage applications, in line with our

empirical application. There are N potential borrower-property pairs, which we refer to

as “individuals.” If the same person applies for a mortgage for two distinct properties,

we would count this as two distinct individuals. Each individual is indexed by i where

i ∈ 1, 2, ..., N . Individuals submit loan applications. They may submit multiple applications

for the same property, m ∈ 1, 2, ..., ni. The number of applications, ni, for each individual

may be dependent on the individual’s characteristics and can be random.

The covariate vector Zim = [Xim, Ci] includes variables observable by the econometrician.

Xim is a vector of variables that may vary across applications if an individual submits multiple

applications (e.g., the application date), while Ci is a vector of variables that are constant

across an individual’s applications (e.g., the census tract for applications involving the same

property). The binary indicator Lim is set to 1 if individual i’s loan applicationm is accepted,

and 0 otherwise. For each approved loan, individuals decide whether to originate or not. Let

Oim = 1 if a loan is originated, and Oim = 0 otherwise. Further, since we are considering

first-lien mortgages throughout, an individual can originate at most one loan.

The econometrician does not observe the individual index i. Instead, an application

j ∈ 1, 2, ..., J , where J ≥ Nrepresenting a row in the data, consists of Xj, Cj, Lj, and the
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element-wise product LjOj.

2.2 Methodology

Our cross-applicants are constructed as follows. We first split the data into partitions based

on the realizations of the variables in Cj that are assumed to be constant across applications

submitted by the individual i (e.g., census tract). We then further break down these parti-

tions into groups based on the variables inXj that are potentially different across applications

submitted by the individual i (e.g., date) but expected to be “close.” In particular, we group

applications such that, for all applications xj and xj′ in the same group, d(Xj, xj′) ≤ ε. Here,

d(·) denotes distance, xj is vector of observed variables for application j of dimension r, and

ε is a tuning parameter that determines the maximum distance between two applications in

the same group.2

Definition 1. We call a cluster of applications S ε-identical if d(xj, xj′) ≤ ε and cj = cj′ for

any applications j, j′ ∈ S, where zj = [xj, cj] is a vector of observed variables for application

j.

We then treat applications in the same cluster as if they were submitted by the same

individual, i. Our hope is that these clusters indeed represent individual applicants who

submitted multiple ε-identical applications.

We first note that finding all ε-identical applications in the data is computationally chal-

lenging. One simple strategy is to begin with single applications as their own clusters. Then,

we iteratively merge the two closest clusters until only one cluster remains. This process

2In our empirical implementation, we use a distance function d(·) of the following form:

d(xj , xj′) =

(
r∑

s=1

ds(xsj , xsj′)
2

)1/2

.

Note that this corresponds to a weighted ℓ2-norm if ds(xsj , xsj′) = ws(xsj −xsj′), although we also consider
more general distances (see Appendix B).
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results in an inverse tree structure where applications progressively merge into larger clus-

ters until a single, giant cluster is formed. We then select the clusters where all applications

within a given cluster are ε-identical by truncating the inverse tree structure at a specific ε

value. All clusters constructed in this manner contain applications j, j′ that are identical in

terms of their categorical variables (cj = cj′) and near-identical in terms of their continuous

variables (d(xj, xj′) ≤ ε). Figure 2 illustrates this process for three applications with iden-

tical cj values (e.g., the same location) but differing loan amounts, denoted as xj. In this

example, as we increase ε, the algorithm will first cluster the first two applications together

into one ε-identical cluster. Once ε is larger than 10K, all three applications are clustered

into a single cluster.

It is also important to note that once this inverse tree is created, there is no need to

recompute clusters (e.g., distances) for different choices of ε, which facilitates the develop-

ment of a method for selecting the ε value without incurring additional computational costs,

which is the topic of the next subsection. The algorithm described above is a version of what

is known as agglomerative clustering. Unfortunately, this algorithm has a worst-case time

complexity of O(ℓ3), where ℓ is the size of the largest partition. Instead, we apply a state-of-

the-art hierarchical agglomerative clustering algorithm for complete-linkage clustering that is

based on the nearest-neighbor chain method. This algorithm has a worst-case complexity of

O(ℓ2) while converging to the same clusters that the original, slower algorithm would produce

[Müllner, 2011]. In our simulation and empirical applications, we implement agglomerative

clustering algorithm using the fastcluster package in Python [Müllner, 2013].

2.3 Useful bounds for tuning parameter selection

In practice, our clustering algorithm may pick up some pairs of applications that are near

identical in terms of their observable characteristics, but in fact correspond to multiple

individuals. In that case, their unobservable characteristics may differ substantially. We

5



Application 1
x1 = $10K

Application 2
x2 = $11K

Application 3
x3 = $20K

S1 = {x1, x2} S2 = {x3}

S21 = {x1, x2, x3}

⇑ d(xj, xj′) ≤ ε

⇓ d(xj, xj′) > ε

Figure 2: The figure illustrates a hierarchical clustering process for three applications with iden-
tical cj values (e.g., the same location) but differing loan amounts, denoted as xj . The red dashed
line represents the cutoff defined by ε for a hypothetical value of ε between $1K and $10K. The
clusters S1 = {x1, x2} and S2 = {x3} are ε-identical clusters at this cutoff. If ε is increased be-
yond $10K (i.e., the red line is lowered), the applications merge into a single ε-identical cluster
S21 = {x1, x2, x3}. This example demonstrates how hierarchical clustering relies on forming an in-
verse tree structure, after which identifying ε-identical clusters becomes straightforward by simply
adjusting the position of the cutoff line.

therefore next propose a way to lower-bound the performance of our algorithm in identifying

clusters of applications belonging to the same applicant. In addition, we will later use these

bounds to choose our tuning parameters (d(·),ε).

We make the following assumptions:

Assumption 1 (Applications are i.i.d. across borrowers). For any l,m and i ̸= j:

Pr[Oim = 1|Ojl = 1] = Pr[Oim = 1] = p.

Assumption 2 (Weakly Increasing Origination Probability). An applicant’s origination
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probability is weakly larger if they submit more than one application:

Pr[Oim = 1|ni > 1] ≥ Pr[Oim = 1]

Let False denote the event that a cluster is a false positive (i.e. contains applications from

more than one applicant), and let Mult denote the event that there are multiple originations

in a cluster S (i.e.
∑

i,m∈S Oim > 1).

Theorem 1. Under Assumptions 1-2, the false positive rate can be bounded above as follows:

Pr[False] ≤ Pr[Mult]

p2
.

Equivalently, this implies that the precision of our algorithm is at least 1− Pr[Mult]
p2

.

The proof can be found in the Appendix. For intuition, consider a simplified version

of the problem where all clusters are at most of size two and applicants submit at most

two applications. Recall that no individual can take out two first lien mortgages for the

same property: for all i,
∑M

m=1 LimOim ≤ 1. If our algorithm works perfectly, and each

cluster contains only applications from a single applicant, the probability of seeing two

originations in the same cluster is equal to zero, since for all clusters S:
∑

i,m∈S LimOim ≤ 1.

On the other extreme, suppose our clusters contain random pairs of applications. In that

case, the probability of seeing two originations in a given cluster can be approximated by

P (Oim)P (Ojk) = P (Oim)
2.

Thus, the rate at which we find multiple originations in the same cluster in the data is

informative about the quality of our algorithm. In fact, this allows us to not only assess the

quality of our clustering algorithm for a given value of tuning parameters (d(·),ε) but also

to choose our tuning parameters.

Theorem 1 means that, in order to bound the precision of our algorithm, we need only an
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estimate of the unconditional probability of origination p, and an estimate of the probability

that our estimated clusters contain multiple originations Pr[Mult]. To estimate the uncon-

ditional probability of origination for a single mortgage application p, we simply use the

empirical probability of origination in our dataset, p̂. Likewise, we simply use the fraction

of clusters that have multiple originations, p̂m, as an estimate for Pr[Mult].

Finally, we note that we can exclude any clusters that indeed contain multiple origination

(which we know are false positives) to improve the precision of our algorithm. Our initial

clusters contained three types of clusters: 1) True cross-applicants ŜT , 2) False positives

with zero or one originations ŜF
0−1, 3) False positives with multiple originations ŜF

2+. Since

we can easily identify the clusters in the third category, we can improve the performance of

our algorithm by simply dropping estimated clusters with multiple originations. This yields

a new lower bound on the precision of our algorithm equal to

1− Pr[Mult]
p2

1− Pr[Mult]
. (1)

Its empirical counterpart is then given by

1− p̂m
p̂2

1− p̂m
. (2)

where p̂ is the empirical probability of origination, and p̂m is the empirical fraction of clusters

with multiple originations.

3 Simulation

We next generate a hypothetical dataset to illustrate our algorithm and demonstrate its per-

formance in a stylized setting. We first create one million “census tracts.” For each census

tract c, the number of applicants belonging to this census tract Nc is equal to 1 + ψc, where
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ψc drawn from a Poisson distribution with parameter λ = 1 to approximate the distribu-

tion of partitions we observe in our empirical application. Next, an applicant i submits a

loan application. After each application, she continues to submit another application with

probability 0.2 such that the expected number of applications per applicant ni is 1.25.

We then create features associated with each application (in addition to the census

tract Ci) as follows. First, to create a second variable that is constant across an indi-

vidual’s applications we randomly assign a group membership Gi ∈ {0, 1} to applicant i

with Pr(Gi = 1) = γ0 ∈ (0, 1), where Gi is independent across i. The variable Gi may

represent characteristics such as race or gender. Next, each application m by applicant i

is associated with three further covariates Xim, Tim and ηi. We assume that both Xim and

Tim are observed by the econometrician, while ηi is not. We stress that Xim and Tim may

differ (slightly) across applications m to reflect the observed data. We create realizations of

these random variables as follows. Tim may reflect the time of the application, and is equal

to Tim = T̃i + νim, where T̃i ∼ Unif [0, 1] and νim ∼ N(0, σT ). Xim may reflect the loan

amount, and is equal to Xim = X̃i+ξim, where ξim ∼ N(0, σX). The conditional distribution

of (X̃i, ηi) conditional on Gi is given by

[X̃i, ηi]
′ ∼ Lognormal(µg,Σg), (3)

where µg and Σg are mean and covariance matrix of bi-variate normal forGi = g. Specifically,

we use γ0 = 0.5, µ0 = [−3,−3], µ1 = [−2.5,−2.5], Σ0 = Σ1 = [0.25 0.1, 0.1 0.25].

Finally, each applicant has a default behavior associated with her. We assume that the

default probability of an applicant, Pr(Di = 1), depends on both X̃i and ηi as follows:

Pr(Di = 1|X̃i, ηi, Gi, T̃i, Ci) = min(1, δ0 + δ1X̃i + δ2ηi). (4)

Potential lenders observe (or are able to estimate) an individual’s default probability P (Di),
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and their decision whether to extend the loan takes the form:

P (Lim = 1) =


1 if P (Di = 1) < 0.27

0.5 if P (Di = 1) ∈ [0.27, 0.29]

0 if P (Di = 1) > 0.29.

(5)

An applicant hears back sequentially from her applications. As long as she has not origi-

nated a loan, each time an application is approved the applicant originates the corresponding

loan with probability 0.9. Once she originates her first loan, the applicant does not originate

any additional loans.

We reemphasize that the econometrician observes application level data without knowing

the index i.3 That is, she does not know whether two applications j and j′ are submitted by

the same individual i. For each application j, the variables Gj, Cj, Xj, Tj, Lj as well as the

element-wise products DjLj and OjLj are observable by the econometrician. On the other

hand, X̃i, T̃i, and ηi are unobserved to the econometrician.

3.1 Results

We first depict a histogram of the number of observed applications per census tract c in

Figure 3.

Since within each census tract, applications coming from different applicants may further

have different values of Gj, the majority of partitions we create based on Cj and Gj are

small, in line with our empirical application.

We then run our algorithm to identify cross-applicants - applicants that submit multiple

applications, using the clustering approach outlined above. For the simulation exercise, we

use simple Euclidean distance, d(xj, xk) = ∥xj − xk∥2, as our distance function between two

3However, while this is infeasible in practice, knowing the index i in our simulated dataset will allow us
to evaluate the performance of our algorithm.
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Figure 3: Number of observed applications per census tract c in our simulated data.

applications xj, xk when computing our clusters. To demonstrate how additional observed

covariates impact our results, we run our algorithm two times. In the first specification

(“without date”), we use only a single continuous variable in Xj during the clustering step,

withholding the second observed covariate Tj. In the second specification (“with date”), we

use both Xj and Tj during the clustering step.4

We first illustrate the performance of our algorithm as a function of the tuning parameter

ε, where d(xj, xk) < ε if applications j and k are grouped together in the same cluster

S. Figure 4a depicts the fraction of clusters that contain only applications from a single

applicant. This represents the precision (= True Positives/(True Positives + False Positives))

of our algorithm, where a positive instance corresponds to a true cross-applicant.5

4Alternatively, we note that the two specifications can be viewed as using two different weight vectors
on the covariate vector. That is, with xj = [Xj , Tj ], and using a weighted ℓ2-norm of the form dw(xi, xj) =(∑r

k=1 wk(xki − xkj)
2
)1/2

as the distance metric between applications, our two specifications (“with date”
and “without date”) correspond to weight vectors of w = (1, 1) and w = (1, 0), respectively. We will revisit
this interpretation in Section 4.

5To keep things as simple as possible, we drop all clusters with more than two applications in both our
simulation results and our application that follows, such that all results are based on clusters with two
applications.
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(a) Fraction of clusters that consist of applications
from a single applicant.

(b) Number of estimated clusters.

Figure 4: Estimated cross-applicants as function of tuning parameter ε. Raw cluster estimates
are adjusted by dropping clusters with multiple originations.

We first note that the availability of an additional covariate greatly improves the per-

formance of the algorithm: Without the date variable Tj, the precision of our algorithm is

below 70% for all values of ε, while including the date variable can lead to a precision above

95%. Next, we note that the quality of our algorithm increases as we reduce the size of ε.

Intuitively, as we require applications within a cluster to be closer to identical, we reduce

the number of “false positives” - applications that look similar but are submitted by distinct

applicants. On the other hand, Figure 4b illustrates how the number of estimated cross-

applicants increases with ε. We thus face a trade-off - while small values of ε tend to lead to

fewer false positives, we might want to keep ε large enough to obtain a substantial sample

size. In both our specifications here, we observe a sweet spot slightly below ε = 0.1. For

example, with ε = 0.06 our algorithm finds more than 370,000 clusters that contain multiple

applications in both specifications, and around 95% (“with date”) and 64% (“without date”)

of these clusters contain only applications from a single applicant.

Since the construction of Figure 4a requires knowledge of an individual’s identifier i, it is

infeasible in practice and cannot be used to assess the quality of the estimates or to choose

the value of the tuning parameter ε. However, as we argued in the previous section, the rate
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(a) As a function of ε (b) As a function of sample size

Figure 5: Implied fraction of clusters that consists of true cross-applicants (precision).

at which we find multiple originations in the same cluster is informative about the quality of

our algorithm. The probability of origination for a given approved application is p̂ = 0.7917,

and the probability of a random pair of applications having both loans originated is thus

equal to p̂2 = 0.6269. We therefore use 0.6269 as an estimate for the probability that a cluster

containing applications from multiple applicants has two originations. Using Equation (2),

we can then translate p̂ and p̂m, the empirical fraction of clusters with multiple originations

for a given choice of tuning parameters, into an estimate for the fraction of clusters that

consists of applications from the same applicant.

This is depicted in Figure 5a, which shows the estimated fraction of clusters that consists

of applications from the same applicant using Equation (2). We first note the close resem-

blance between Figures 4a and 5a. We take this as an encouraging sign that our proposed

method to assess the performance of our algorithm works well. In our main specification

(“with date”), we obtain a feasible estimate for a lower bound of how many clusters contain

applicants from a single applicant equal to 93.7% at ε = 0.06.

Finally, we directly depict the trade-off between the estimated precision of our algorithm

and the number of estimated cross-applicants in Figure 5b. This allows for an easy illus-

tration of the relevant trade-off across the different tuning parameters (i.e. the tolerance ε

and distance function d(·)). For example, when considering two sets of tuning parameters
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(ε1, d1(·)) and (ε2, d2(·)), we strictly prefer (ε1, d1(·)) to (ε2, d2(·)) if it results in both higher

implied precision and a larger sample size.

4 Application to the US Mortgage Market

4.1 Data

We obtain data on mortgage applications from the Home Mortgage Disclosure Act (HMDA).

The vast majority of all mortgage applications filed in the US are subject to HMDA reporting

and thus included in this dataset. While a publicly available version of this dataset exists,

we work directly with a confidential version (cHMDA) that is available to users within the

Federal Reserve System and includes more detailed information for each loan application

(e.g. the exact date an application was filed).

We restrict our analysis to mortgage applications filed between 2018 and 2023. We

exclude applications from earlier years because a number of important borrower and loan

characteristics, such as the credit score and the loan-to-value ratio (LTV) are available only

starting in 2018. We further retain only first-lien mortgages and applications that are either

approved or denied, dropping applications that are withdrawn by the applicant before a

decision was made, applications closed for incompleteness, loan purchases, and applications

that went through only the pre-approval process. Finally, we drop applications filed outside

the 50 states and Washington D.C.

4.2 Identifying cross-applicants

Around 22% of Americans apply for more than one mortgage during the mortgage applica-

tion process [Consumer Financial Protection Bureau and Federal Housing Finance Agency,
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2024]6. Since the HMDA dataset is at the application level, and not the individual level, it is

generally not possible to identify applicants that submit multiple applications. We apply our

proposed method to identify these “cross-applicants” who applied for several loans during

the mortgage application process.

Following our earlier discussion, we first split the data into partitions based on categori-

cal characteristics we expect to be constant at the individual level. These are: census tract,

property type, occupancy, loan purpose, applicant race, applicant sex, applicant age, loan

type and a flag for whether or not there is a co-applicant.7 Figure 6 shows the distribu-

tion of partition sizes for our sample. We note that 99% of the partitions contain five or

less applicants in our data. This is intuitive: Each partition includes only applications for

mortgages in a small geographic region (census tract), and among those we further separate

applications by eight additional discrete attributes of applicant and property.

Thus, all applications in a given partition are similar in a number of dimensions, including

the location of the property. However, they may include applications that are filed far apart

in time, and they may include applications that differ substantially in their reported income

and loan amounts. We therefore next apply the above-mentioned hierarchical agglomerative

clustering algorithm to further break down the partitions into clusters. We define our clusters

such that, for all applications xj, xj′ in the same cluster the following holds:

d(xj, xj′) ≤

(
r∑

s=1

ds(xsk, xsj)
2

)1/2

≤ ε, (6)

6This number is based on the National Survey of Mortgage Originations, conducted by the Consumer
Financial Protection Bureau. This is a quarterly representative survey of individuals with newly originated
mortgages that asks questions about the entire process of obtaining a mortgage.

7Note that this implies that applicants who apply for different types of loans cannot end up in the same
cluster. This approach makes sense when we want to investigate whether and how a lender distinguishes
between two (almost) identical applications submitted by the same individual. In a different context, it may
be more appropriate to track an applicant who applies for different types of loans for the same property.
Hence, this is an application-specific modeling choice, and we suggest carefully selecting the variables in the
distance function to ensure that the identified cross-applicants are consistent with the research question.
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Figure 6: Distribution of partition sizes (number of applications per partition). Partitions larger
than ten applications, which constitute 0.13% of the total, are omitted for clarity. The largest
partition in the dataset contains 153 applications.

where xj is a vector of observed variables for application j. Specifically, we use xj =

(datej, incj, sizej, ficoj, ltvj), where datej represents the date an application is filed, incj

is the reported income in thousands of dollars, sizej is the requested loan amount in thou-

sands of dollars, ficoj denotes the reported credit score at the time of application, and ltvj

is the loan-to-value ratio of the loan. Note that this corresponds to a weighted ℓ2-norm if

ds(xsj, xsj′) = ws(xsj−xsj′), although we also consider more general distances (see Appendix

B).

We consider a total of 96 combinations of distance functions d(·) and tolerance parame-

ters ε, and select the best combination based on the accuracy-size trade-off discussed in the

previous section and illustrated in Figure 7. In particular, Figure 7 depicts the precision

of our algorithm relative to the sample size for the points (d(·), ε) on the “frontier”: the
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Figure 7: The precision-sample size frontier for identifying cross-applicants. Each point on the
curve represents a specific combination of distance function and tolerance parameter. The large
orange dot corresponds to our preferred specification, balancing precision and sample size.

combinations of d(·) and ε that are not dominated by an alternative combination yielding

both higher precision and a larger sample size. Each point on the curve represents a spe-

cific combination of distance function and tolerance parameter. We highlight our preferred

specification as the larger orange dot. At this specification, we obtain 314, 344 clusters, and

estimate that 92.3% of our estimated clusters are true cross-applicants.

To validate our estimated cross-applicants, Figure 8 depicts the distribution of the differ-

ence in dates between applications within a cluster. We depict this distribution separately for

those cross-applicants that have their first application denied and those that have their first

application approved. We see that most applications within the same cluster are submitted

within 3 weeks, and observe a bunching of the differences at multiples of seven, corresponding
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Figure 8: Histogram of date differences between the first and second application submitted by
the same applicant. All estimated cross-applicants submitted both applications within 39 days.

to applications being submitted on the same weekday. Further, cross-applicants who first get

denied take slightly longer to submit their second application, compared to cross-applicants

who have their first application approved.

This suggests that applicants who had their first application denied may try to improve

their profile before applying again. In Figure 9, we therefore explore how some of the key

variables that determine a loan decision vary between the two applications an applicant

submits. Figure 9a shows that, applicants whose first application is rejected tend to have

a slightly higher credit score on their second application, compared with applicants whose

first application is approved, when they submit their second application within four weeks

of their first application. After four weeks, all cross-applicants experience a drop in their

credit score. This is consistent with a hard credit inquiry as a result of their first application

negatively impacting their credit score.
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(a) Credit score

(b) Income (yearly, in 1,000s) (c) Loan amount (in 1,000s)

Figure 9: Average change in the reported variable in an applicant’s second application relative to
her first application, as a function of the date differences between the first and second application
submitted. Yellow triangles represent cross-applicants whose first application was approved. Blue
dots represent cross-applicants whose first application was denied.

Figure 9b shows that applicants whose first application is rejected tend to report a higher

income on their second application, compared with applicants whose first application is

approved. This is consistent with denied applicants taking steps to (marginally) improve

their profile if their first application is rejected. In particular, we note that income is generally

self-reported (though subject to verification), making it potentially easier to alter compared

to, for instance, one’s credit score.

Figure 9c shows that applicants whose first application is rejected tend to request a

slightly lower loan amount on their second application, compared with applicants whose

first application is approved. This is again consistent with denied applicants taking steps to
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(marginally) improve their profile if their first application is rejected.

5 Conclusion

In this paper, we presented a novel clustering-based algorithm designed to detect cross-

applicants in large anonymized datasets, such as loan-level mortgage data. By applying

this methodology to the Home Mortgage Disclosure Act (HMDA) dataset, we successfully

identified individuals submitting multiple mortgage applications, achieving an estimated

precision of 93%. Our approach introduces a new evaluation method that optimizes the

trade-off between precision and efficiency without the need for labeled training data, making

our proposed method highly practical. Our results open several promising directions for

future research. We conclude by highlighting three potential applications of our work:

1. Measuring Fairness: Cross-applicants may be useful for measuring fairness across

demographic groups in the mortgage market. In a companion paper, Elzayn et al. [2024]

argue that cross-applicants who had one application approved and a second (near-identical)

application rejected can be thought of as “marginal applicants.” Comparing the subsequent

default probabilities of these marginal applicants may then reveal discrimination in the

lenders’ loan granting decisions.

2. Monitoring Credit Conditions and Comparing Banks/Lenders: Identifying marginal

borrowers may provide a way to monitor current credit conditions. The marginal borrow-

ers as constructed above, in essence, are those borrowers who are on the lender’s decision

boundary. By examining the characteristics of these borrowers’ applications, we can quantify

how strict or lenient a lender is. By aggregating lenders’ strictness measures, we can further

monitor how lending conditions vary over time or across different regions. Additionally, this

measure allows for comparisons across banks and lenders, allowing us to explore the factors

that determine a bank’s level of strictness.
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3. Exploring Mortgage Shopping Behavior: Access to a dataset of cross-applicants also

provides an opportunity to study the shopping behavior of mortgage applicants. By analyz-

ing the patterns and timing of multiple applications, we can gain a better understanding of

how borrowers compare lenders, and how these behaviors differ across various demographic

or economic groups.
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A Mathematical Appendix

In this section, we derive how we can use the observed rate of multiple originations per cluster

to bound the rate at which applications from distinct individuals are incorrectly clustered

together in more detail. Let K be the number of distinct applicants in a cluster. Before the

main result, we start with the following useful lemma.

Lemma 1. The probability of multiple originations in a false cluster is bounded below by p2.

That is:

Pr[Mult|False] ≥ Pr[Oim = 1]2 = p2

Proof. By definition, K ≥ 2 for false clusters and thus:

Pr[Mult|False] = Pr[K = 2|False] Pr[Mult|K = 2] + Pr[K > 2|False] Pr[Mult|K > 2]

= Pr[K = 2|False] Pr[Mult|K = 2] + (1− Pr[K = 2|False]) Pr[Mult|K > 2].

We can further separate the clusters with two distinct applicants into those that contain

exactly two applications, and those that contain more than two applications, and thus write

Pr[Mult|K = 2] = w2 Pr[Mult|K = 2, |S| = 2] + (1 − w2) Pr[Mult|K = 2, |S| > 2] where

w2 = Pr[|S| = 2|K = 2]. By Assumption 1, Pr[Mult|K = 2, |S| = 2] = p2. Since further,

by Assumption 2, Pr[Mult|K = 2, |S| > 2] ≥ Pr[Mult|K = 2, |S| = 2], it follows that

Pr[Mult|K = 2] ≥ p2.

In fact, we can use the same argument to separate the clusters with K > 2 distinct

applicants into those that contain exactly K applications, and those that contain more than

K applications. Then, Pr[Mult|K = k] = wk Pr[Mult|K = k, |S| = k]+(1−wk) Pr[Mult|K =

k, |S| > k]. By Assumption 1, Pr[Mult|K = k, |S| = k] = 1 − Pr[¬Mult|K = k, |S| = k].
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This probability is given by

Pr[¬Mult|K = k, |S| = k] : = g(p, k) = (1− p)k +

(
k

1

)
p(1− p)k−1

= (1− p)k + kp(1− p)k−1

= (1− p)k−1(1 + p(k − 1))

= (1− p)k−1(1− p+ kp).

Note that for any fixed p ∈ [0, 1],

∂g

∂k
≤ 0

for all k; to see this, we calculate that:

∂g

∂k
= (1− p)k−1 [((k − 1) p+ 1) ln(1− p) + p] .

Then notice that the inner term is 0 at p = 0 and decreases with p, because

∂

∂p
[((k − 1)p+ 1) ln(1− p) + p] = (k − 1) ln(1− p)− pk

1− p
,

which is non-positive for any k ≥ 1, p ∈ [0, 1]. Hence ∂g
∂k

is product of a non-negative and

non-positive term, i.e. is non-positive overall. In other words, Pr[¬Mult|K = k, |S| = k]

is decreasing in k. Since Pr[Mult|K = k, |S| = k] = 1 − Pr[¬Mult|K = k, |S| = k], we

must have that Pr[Mult|K = k, |S| = k] is increasing in k, and Pr[Mult|K = k, |S| = k] ≥

Pr[Mult|K = 2, |S| = 2] = p2.

Since, by Assumption 2, Pr[Mult|K = k, |S| > k] ≥ Pr[Mult|K = k, |S| = k], it also
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follows that Pr[Mult|K = k] ≥ p2. Putting it together, we obtain that

Pr[Mult|False] = Pr[K = 2|False] Pr[Mult|K = 2] + (1− Pr[K = 2|False]) Pr[Mult|K > 2]

≥ Pr[K = 2|False]p2 + (1− Pr[K = 2|False])p2 = p2.

The proof of Theorem 1 then follows:

Proof of Theorem 1. We can write:

Pr[Mult] = Pr[False] Pr[Mult|False] + Pr[¬False] Pr[Mult|¬False]

But Pr[Mult|¬False] = 0 because we consider first-lien mortgages and therefore an individ-

ual can originate at most one loan. We can thus write that:

Pr[False] =
Pr[Mult]

Pr[Mult|False]
≤ Pr[Mult]

p2
,

where the inequality follows from Lemma 1. It also immediately follows that the precision

of our algorithm is given by

precision = Pr[¬False] = 1− Pr[False] ≥ 1− Pr[Mult]

p2
.
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B Implementation Details

Recall that we use our agglomerative clustering algorithm to break down the partitions of the

data into groups such that for all applications xj and xj′ in the same group, d(xj, xj′) ≤ ε.

We use a distance function of the following form:

d(xj, xj′) =

(
r∑

s=1

ds(xsj, xsj′)
2

)1/2

.

Table 1 summarizes the different ways we compute the distance between applications. Each

row corresponds to a specific definition of the distances ds(·) for s = 1, . . . r. If ds is numeric,

ds(xsj, xsj′) = ws(xsj − xsj′) with the number in Table 1 indicating the value of ws. Thus,

if the entire weight vector is numeric, the corresponding row represents a weighted ℓ2-norm.

If ws is equal to “Penalize exact”,

ds(xsj, xsj′) =


(xsj − xsj′) if xsj ̸= xsj′

55 if xsj = xsj′ .

If ws is equal to “Reward exact”,

ds(xsj, xsj′) =


0 if |xsj − xsj′| < 7

2(|xsj − xsj′| − 7) otherwise.

For each row, we then use ε ∈ {15, 22, 30, 40, 52, 70, 90, 110} for a total of 96 combinations

of (d(·), ε). Figure 10 shows the precision and sample size for each of these combinations.
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Application Date Income Loan Amount Credit Score Property Value

1. 1 0 0 0 1
2. 1 0 1 0 0
3. 1 1 0 0 0
4. 1 1 1 0 1
5. 1 1 1 1 1
6. 1 1 1 2 1
7. 1 1 1 3 2
8. Penalize Exact Penalize Exact 1 1 1
9. Penalize Exact Penalize Exact Penalize Exact 1 1
10. Reward Exact 1 1 1 1
11. Reward Exact 1 1 2 1
12. Reward Exact 1 1 3 2

Table 1: Universe of distance functions considered. Each line corresponds to one definition of
distance between applications.
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Figure 10: Precision and sample size of our algorithm as a function of different distance definitions
and tolerances. Each point on the curve represents a specific combination of distance function and
tolerance parameter. The large orange dot corresponds to our preferred specification, balancing
precision and sample size.
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