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Denial and Default rates over time
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Fairness in the USmortgage market

Does the outcome of this market look fair?
• Need a definition of fairness.• Different definitions proposed in the academic literature; e.g. Translation
tutorial: 21 fairness definitions and their politics [Narayanan, 2018]• Different definitions used in public debate/news media News headlines• Different definitions alluded to in the law/regulatory guidance.

Does it matter what definition of Fairness we use?
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Why the USMortgage market?

1. Mortgage balances are the largest source of debt for most Americans.
2. Mortgage market plays a prominent role in the persistence of wealth gapsacross generations (Charles and Hurst [2003], Kuhn et al. [2020]).
3. Mortgage underwriting has seen a shift towards algorithmic underwritingover the past two decades.
4. Protected attributes of the applicant (e.g. race or gender) are directlyobservable.
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Measuring Fairness in consumer finance and the USmortgage market

We’re in good company at the Philadelphia Fed!
• Giacoletti, Heimer, and Yu [2022]• Bhutta and Hizmo [2021]; Bhutta, Hizmo, and Ringo [2022]• Fuster, Plosser, Schnabl, and Vickery [2019]• Conklin, Gerardi, and Lambie-Hanson [2022]• An, Cordell, Geng, and Lee [2022]• Meursault, Moulton, Santucci, and Schor [2022]• Carlin and Divringi [2018]

Also of note: Federal Reserve Bulletin (now CFPB). Most papers focus on oneparticular measure.
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Defining Fairness

We consider 5 classes of Fairness definitions:1. Statistical Parity2. Predictive Parity3. Marginal Outcome test4. Equalized Odds5. Conditional Statistical Parity

Adverse impact (29 CFR § 1607.4):“A selection rate for any race [...] whichis less than four-fifths [..] will generallybe regarded [..] as evidence ofadverse impact.”
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Statistical Parity and Predictive Parity
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The four-fifths rule
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Defining Fairness

We consider 5 classes of Fairness definitions:1. Statistical Parity2. Predictive Parity3. Marginal Outcome test4. Equalized Odds5. Conditional Statistical Parity

Equal Credit Opportunity Act(Regulation B), 12 CFR § 1002.4(a):“Equal credit standards”
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Marginal outcome test

• Economics has traditionally used the outcomes of “marginal candidates”to assess whether credit standards are equal• Idea: If the same risk threshold is used for Black and white applicants,people at the threshold should default at the same rate
Interagency Fair Lending Examination Procedures“The examiner-in-charge should, during the following steps, judgmentallyselect from the initial sample only those denied and approved applicationswhich constitute marginal transactions.”
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Marginal outcome test

• Issue: Obtaining “marginal applicants” is often difficult.
Interagency Fair Lending Examination Procedures“The examiner-in-charge should, during the following steps, judgmentallyselect from the initial sample only those denied and approved applicationswhich constitute marginal transactions.”
• We develop a novel way to construct marginal applicants by identifyingcandidates who apply for multiple mortgages.• An applicant is marginal if she has one approval and one denial.
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Identifying Crossapplicants

We use Machine Learning to transform cHMDA into an applicant level dataset.
1. Split the data into partitions, characterized by the distinct outcomes of 9categorical variables.Example: census tract of the property
2. Apply a state-of-the-art agglomerative hierarchical clustering algorithmto further break down these partitions into clusters based on 5 additionalcontinuous attributes.Example: application date
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Identifying Crossapplicants

• All applications in a given cluster are “near-identical”.
• Rate at which clusters contain multiple origination informative aboutwhether clusters correspond to single individuals.• Bad algorithm - all clusters are pairs of applications from two applicants:Most clusters with two approvals have two originations• Perfect algorithm - all clusters are pairs of applications from one applicant:No clusters with two approvals have two originations
• We estimate that 92% of clusters represent single individuals.
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Marginal Candidates

• Can subset to those clusters that contain both one approval, and onedenial.
• Individuals that submitted two near-identical applications:• One loan officer approved the application• Another loan officer denied the application
• We consider such an applicant marginal by “revealed preference”.
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Marginal Candidates

• If same risk threshold is usedacross lenders, default rate shouldbe the same across groups
• Marginal Black applicants defaultmore frequently
• Not consistent with higher lendingstandards for Black applicants
• Fairness violation is “negative” forthis definition
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Defining Fairness - feasibly

We consider 6 broad classes of Fairness definitions:1. Statistical Parity2. Predictive Parity3. Marginal Outcome test4. Equalized Odds5. Conditional Statistical Parity

Equal Credit Opportunity Act(Regulation B), 12 CFR § 1002.1(b):“availability of credit to all creditworthyapplicants without regard to race [...]”
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Equalized Odds - Equality of Opportunity

• Consider crossapplicants with an originated loan that did not default.
• How likely were they denied at least once?
• Intuitively captures notion of “unfairly denied”

Does the rate of “unfair denials” vary by race?
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Equalized Odds - Equality of Goodwill

• Consider crossapplicants with an originated loan that did default.
• How likely were they approved on all their applications?
• Intuitively captures notion of “unfairly approved”

Does the rate of “unfair approvals” vary by race?
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Equalized Odds (based on crossapplicants)

Defaulters Non-defaulters
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Equality of Opportunity (based on crossapplicants)

• Black applicants:
67% chance at least onedenial for non-defaulters• white applicants:
50% chance at least onedenial for non-defaulters• Intuitively, captures the rate ofbeing “unfairly denied” Non-defaulters
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Defining Fairness - feasibly

We consider 5 classes of fairness definitions:1. Statistical Parity2. Predictive Parity3. Marginal Outcome test4. Equalized Odds5. Conditional Statistical Parity

Disparate treatment/impact: “disparateimpact tests should only includecontrols for attributes that areplausibly business justified.”[Ayres,2010]
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Conditional Statistical Parity

Conditional Statistical Parity measures the difference in denial rates acrossgroups, conditional on varying information sets (e.g. a set of covariates X).
• Choice of X is extremely important
• Potential for1. missing covariates2. included variable bias
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Conditional Statistical Parity

Specifications differ in1. set of covariates
2. functional form
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Interactive dashboard

• All results are based on two works-in-progress (joint works with Minchuland Hadi Elzayn)
• Interactive Appendix available, allows the user to explore the differentmeasures we discussed today (and more!) across time and space
• Hoping to expand this to other protected attributes, and make thisavailable through the Philadelphia Fed to Researchers and the generalpublic.
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Taking stock

Does it matter what definition of Fairness we use?
• Yes, different definitions lead to different results.
• No “right" definition, but will be context-dependent
• Even then, perhaps a more comprehensive view considers multipledefinitions.
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Defining Fairness - Theory

• Theoretical results exist that prove how seemingly reasonable definitionare at odds with each other.• Inherent Trade-Offs in the Fair Determination of Risk Scores [Kleinberg,Mullainathan, and Raghavan, 2017] considers three widely useddefinitions of fairness.(related to: Marginal Outcome test, Equality of Opportunity, Equality ofGoodwill)
Kleinberg et al. [2017]:“We prove that except in highly constrained special cases, there is nomethod that can satisfy these three conditions simultaneously.”
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Stylized Facts

• Broad measures point to systemicinequality between demographicgroups
• Not necessarily reflective ofdiscrimination in the mortgagesector
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Stylized Facts

• Isolating the mortgage decisionyields a more nuanced picture
• On the one hand:1. Marginal candidates more likelyto default in minority group2. “Defaulters” denied at same rateacross demographic groups

27



Stylized Facts

• Isolating the mortgage decisionyields a more nuanced picture
• On the other hand:1. Minority applicants more likely tobe denied conditional on rich setof covariates2. Minority “Non-defaulters” deniedat substantially higher rates
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Fairness definition matters

Range for each definition based on yearly measures for 2018-2020
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Conclusion

• Definition of fairness matters, both theoretically and empirically.
• Any one measure (or study) may not paint the full picture

Does the outcome of the US mortgage market look fair?
• Broad measures of fairness point to systematic inequality
• More narrow measures are more ambiguous
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Thank you
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