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A Details on trend extrapolation
The default method to extrapolate a linear trend uses GMM and is implemented as

follows. Let TG ≤ LG be the number of periods prior to G used to estimate the trend

parameters and TM ≤ M be the number of “post-event” periods where the trend is
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active. We assume fk ≠ 0 for k ∈ [−G − TG, TM] and 0 otherwise. We then have

moments given by

δ̂k − ϕ′fk = 0

for k = −G − TG, ...,−G − 1. Let δ̂TG be the TG-vector collecting δ̂k. Let HTG be the

TG × dim (ϕ) matrix whose jth row is f
′

k for k = j − 1 −G − TG.
A minimum distance estimator ϕ̂ of ϕ solves

ϕ̂ = argmin
ϕ
ĥ (ϕ)′ Ŵ ĥ (ϕ)

ĥ (ϕ) = δ̂TG −HTGϕ.

Solving the FOC gives

0 = −H ′LŴ (δ̂TG −HLϕ̂)
ϕ̂ = (H ′TGŴHTG)−1H ′TGŴ δ̂

Under suitable regularity conditions, we have that

√
n
⎛
⎝

ϕ̂ − ϕ0

δ̂TG − δL0
⎞
⎠
→ N

⎛
⎝
0,

⎡⎢⎢⎢⎢⎣

ΛTGΩTGΛ
′
TG

ΛTGΩTG

ΩTGΛ
′
TG

ΩTG

⎤⎥⎥⎥⎥⎦

⎞
⎠

where

ΛTG = (H ′TGWHTG)−1H ′TGW

and ΩTG is the asymptotic variance of δ̂TG . The feasible efficient weighting matrix is

Ŵ = Ω̂−1TG → Ω−1TG , and with W = Ω−1TG we have that ΛTGΩTGΛ
′
TG
= (H ′TGΩ

−1
TG
HTG)−1.

A.1 Estimation and inference on adjusted event-time path

Now let δ̂ be the vector containing the entire estimated event-time path, so dim (δ̂) =
dim (δ) =M +LM +G+LG + 2. Let H be the dim (δ)× dim (ϕ) matrix whose jth row

is f
′

k for k = j − 2 −G −LG. Given the estimate ϕ̂ we obtain the plugin estimate δ̂∗ of

the adjusted event-time path by

δ̂∗ = δ̂ −Hϕ̂.
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Let Λ = [0 ΛTG 0], with 0 conformable matrices of 0s (dim (ϕ) × 1 and dim (ϕ) ×
(dim (δ) −LG), respectively), Λ̂ be its sample analogue, and I be a dim (δ) × dim (δ)
identity matrix. Hence δ̂∗ = δ̂ − Hϕ̂ = (I −HΛ̂) δ̂ and it follows that (again under

suitable conditions)

√
n (δ̂∗ − δ∗0)→ N (0,Ω −HΛΩ −ΩΛ′H ′ +HΛΩΛ′H ′)

where Ω is the asymptotic variance matrix of δ̂ and

δ∗0,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, k < −G

∑km=−G βm, −G ≤ k ≤M

∑Mm=−G βm, k >M.

Hypothesis testing for pre-trends and dynamics leveling off can now proceed as in the

TWFE case, replacing δ̂ with δ̂∗.

A.2 Covariance of adjusted event-time path and coefficient

on controls

For some purposes we may be interested in testing hypotheses jointly on (δ∗0 , ψ0).
Since δ̂∗ = (I −HΛ̂)δ̂, we have

√
n
⎛
⎝
δ̂∗ − δ∗0
ψ̂ − ψ0

⎞
⎠
=
⎛
⎝
I −HΛ̂ 0

0 I

⎞
⎠
√
n
⎛
⎝
δ̂ − δ0
ψ̂ − ψ0

⎞
⎠
→
⎛
⎝
I −HΛ 0

0 I

⎞
⎠
N(0, V ),

with 0 conformable matrices of zeros (dim(δ) × dim(ψ) for the upper right and

dim(ψ)×dim(δ) for the lower left) and I conformable identity matrices (dim(δ) for the
upper left and dim (ψ) for the lower right). Finally, let Ωψ denote the dim(ψ)×dim(ψ)
asymptotic variance of ψ̂ and Ωδ,ψ denote the dim(ψ)×dim(δ) asymptotic covariance
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between δ̂, ψ̂. We can express

V =
⎛
⎝

Ω Ω′δ,ψ
Ωδ,ψ Ωψ

⎞
⎠

and the asymptotic variance of (δ̂∗, ψ̂) is

⎛
⎝
I −HΛ 0

0 I

⎞
⎠
⎛
⎝

Ω Ω′δ,ψ
Ωδ,ψ Ωψ

⎞
⎠
⎛
⎝
I −Λ′H ′ 0

0 I

⎞
⎠
=

⎛
⎝
(I −HΛ)Ω(I −Λ′H ′) (I −HΛ)Ω′δ,ψ

Ωδ,ψ(I −Λ′H ′) Ωψ

⎞
⎠
.

B Sup-t confidence bands
We use sup-t bands for uniform inference (see Freyberger and Rai (2018), Montiel Olea

and Plagborg-Møller (2019), and the references therein for additional background).

These bands are constructed by adding (subtracting) a constant times the vector

of standard errors of δ̂ from δ̂, such that the simultaneous confidence band at each

coefficient δk is equal to

B̂k(α) ≡ [δ̂k − cασ̂k, δ̂k + cασ̂k]

for a chosen significance level α, where cα denotes the corresponding sup-t critical

value.

To compute cα, we use a simple plug-in estimator (Montiel Olea and Plagborg-

Møller (2019)).

1. Draw N i.i.d vectors V̂ (ℓ), ℓ = 1, . . . ,N of dimension K = dim(δ̂) from a multi-

variate normal with mean 0K and variance Ω̂ given by the estimated variance

of δ̂.

2. For each replication ℓ = 1, . . . ,N , let tℓ = max
k=1,...,K

∣Ω̂−1/2kk V̂
(ℓ)
k ∣.

3. Set cα = Q1−α (tℓ), ℓ = 1, . . . ,N , where Q is the quantile function.
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C Details for least wiggly path

C.1 The least wiggly path proposal

We denote the dimension of δ as K ≡ G+M +LG+LM +2. For v, a finite-dimensional

coefficient vector, and k, an integer, define the polynomial term

δ∗k(v) =
dim(v)

∑
j=1

vj(
k − s1
s2
)j−1,

where vj denotes the jth element of coefficient vector v and dim(v) denotes the di-

mension of this vector. s1 and s2 denote constants that shift and scale the event time

(range of the polynomial). We set s1 = −G−LG −1 and s2 =M +LM +G+LG +2. Let
δ∗(v) collect the elements δ∗k(v) for −G −LG − 1 ≤ k ≤M +LM , so that δ∗(v) reflects
a polynomial path in event time with coefficients v.

xtevent plots the least “wiggly” confound whose path is contained in the Wald

region CR(δ) for the event-time path of the outcome. Specifically, it plots δ∗(v∗),
where

p∗ =min{dim(v) ∶ δ∗(v) ∈ CR(δ)} and (1)

v∗ = argmin
v
{v2p∗ ∶ dim(v) = p∗, δ∗(v) ∈ CR(δ)}. (2)

Intuitively, the Wald confidence region represents the set of event time paths for

which a joint F -test of the observed point estimates is not rejected. Since this region

is an ellipsis, there is no straightforward graphical illustration of this region in an

event plot.

To plot the least wiggly path, we solve a two-part problem. In (1), we find the

smallest order p∗ such that a polynomial of order p∗ is entirely contained in the Wald

region CR(δ). In (2), we then choose the polynomial with the lowest coefficient on

the highest order term of that polynomial.

In practice we normalize the event path, such that δk = 0 for at least one k (e.g.

usually at k = −1). We will use N to denote the set of size ∣N ∣ that collects all
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normalized coefficients, such that δ∗k(v) = 0 for k ∈ N . Throughout, we only consider

the case ∣N ∣ ∈ {1,2}, i.e., we allow for at most two normalizations.

C.2 Implementation

C.2.1 Finding p∗

We start with the problem of finding p∗ in (1). We define Σ as the covariance matrix

of δ̂ with added zeros in the rows and columns corresponding to the normalized

coefficients.

Since p∗ is generally small, it is feasible to solve (1) iteratively as follows:

Algorithm 1 Finding p∗

p∗ ← 0
feasible ← 0
while feasible = 0 do

p∗ ← p∗ + 1
feasible ← SolutionInWaldRegion(δ̂, p∗, α)

end while

function SolutionInWaldRegion(δ̂, p∗, α)
W ∗ =minv∶dim(v)=p∗[δ∗(v) − δ̂]′Σ−1[δ∗(v) − δ̂] s.t. δ∗kn(v) = 0 for n ∈ N

▷ Σ−1 denotes the generalized inverse.
return 1(W ∗ ≤ c1−α)

▷ c1−α is the 1 − α quantile of a random variable τ ∼ χ2(K − ∣N ∣).
end function

Note that p∗ is less than K = dim(δ) by construction, and thus the loop in Al-

gorithm 1 is (at least theoretically) guaranteed to converge after at most K rounds.

To ensure numerical stability, we restrict p∗ to be less than or equal to ten in our

implementation (with a user option to reduce the upper bound further). If p∗ > 10,
we conclude “no smooth path exists.”

To find W ∗ in practice, we use the first-order conditions of the minimization of

the Wald statistic subject to the constraints on the normalized coefficients.

6



To do this, we write the least wiggly path polynomial in matrix notation as δ∗(v) =
F

K×p∗
v

p∗×1
, where Fkj = (k−s1s2

)j−1 for k = 1, . . . ,K. The rows of F collect the polynomial

terms for a given (shifted) event time k, and the vector v collects the polynomial

coefficients. The problem for finding W ∗ can be rewritten as:

min
v
[Fv − δ̂]

′
Σ−1 [Fv − δ̂] s.t. δ∗k(v) = 0 for k ∈ N . (3)

From the Lagrangian, the first-order conditions are:

F ′Σ−1Fv = F ′Σ−1δ̂ + 1

2
λA′norm

Anormv = 0

Here, Anorm is the matrix with the rows of F corresponding to the normalized

coefficients. Algebra then shows that v(λ) = (F ′Σ−1F )−1[F ′Σ−1δ̂ + 1
2λA

′
norm], and

plugging this back into the second first order condition above yields

λ = −2[Anorm(F ′Σ−1F )−1A′norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂.

Thus, the solution for v is given by

ṽ = (F ′Σ−1F )−1

[F ′Σ−1δ̂ −A′norm[Anorm(F ′Σ−1F )−1A′norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂] .

We can write the solution for v as a matrix product. LetXX ≡
⎡⎢⎢⎢⎢⎢⎣

2F ′Σ−1F A′norm

Anorm 0
∣N ∣×∣N ∣

⎤⎥⎥⎥⎥⎥⎦

and Xy ≡
⎡⎢⎢⎢⎢⎢⎣

2F ′Σ−1δ̂

0
∣N ∣×∣N ∣

⎤⎥⎥⎥⎥⎥⎦
. Then the solution for v is the vector with the first K rows of

ṽ = (XX)−1Xy.

C.2.2 Finding the optimal path given p∗

Once we have found a solution to (1) using Algorithm 1, the next step is to find

the polynomial with the lowest coefficient on the p∗ term that is still contained in
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the Wald region (see equation 2). First note that by construction v2p∗ ≠ 0 (If not,

Algorithm 1 would have found a solution at p∗ − 1). v∗ can then be found through a

simple constrained minimization on the vector v (of dimension p∗):

v∗ = argmin
v
v2p∗ (4)

such that [δ∗(v) − δ̂]Σ−1[δ∗(v) − δ̂] ≤ c1−α} (5)

and δ∗k(v) = 0 for k ∈ N , (6)

with Σ and c1−α defined as above.

First, if p∗ ≤ ∣N ∣, the constraint in (6) implies that v∗ = 0 and we are done. Next,

if p∗ > ∣N ∣, we note that v∗ will always be on the boundary of the Wald region. Thus,

the constraint in (5) will always be binding, and we can substitute both constraints

directly to solve for v∗. In particular, given a set N of normalized coefficients and

the constraint in (5), we can solve for some of the other coefficients. If p∗ > ∣N ∣ + 1,
we use an unconstrained optimization to solve for the remaining ones after that.

Specifically, partition the matrices Anorm and F into three parts as follows

Anorm = [ Ab
∣N ∣×(p∗−∣N ∣−1)

, A1
∣N ∣×∣N ∣

, A2
∣N ∣×1
]

F = [ Fb
K×(p∗−∣N ∣−1)

, F1
K×∣N ∣

, F2
K×1
],

with the vector v partioned accordingly into v = [vb; v1; v2]. We will solve for the

coefficients v1 and v2 using the constraints in (6) and (5) respectively, and then

solve for the coefficients vb by unconstrained minimization. To do so, first note that,

because Anorm contains the rows of F associated with the normalized coefficients,

Anormv = Abvb +A1v1 +A2v2 = 0 and thus v1 = A1
−1(−Abvb −A2v2). (7)

It follows that

δ∗(v) = Fv = Fbvb + F1v1 + F2v2 = Fbvb − F1[A1
−1(Abvb +A2v2)] + F2v2,

and the constraint in (5) becomes
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0 =([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1

−1Ab)vb − δ̂] − c1−α)

+ 2([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1

−1A2))v2

+ v′2([(F2 − F1A1
−1A2)]′Σ−1[(F2 − F1A1

−1A2)])v2.

This is a quadratic expression for (the scalar) v2 in terms of vb and, defining the

scalars d0, d1 and d2 as

d0 = [(F2 − F1A1
−1A2)]

′
Σ−1[(F2 − F1A1

−1A2)],

d1(vb) = 2([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1

−1A2)),and

d2(vb) = ([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1

−1Ab)vb − δ̂] − c1−α)

simplifies to d0v22 + d1(vb)v2 + d2(vb) = 0.
Using the quadratic formula, we can then solve for v2 by solving the minimization

problem,

v2(vb) =
−d1(vb) ±

√
d1(vb)2 − 4d0d2(vb)
2d0

. (8)

Note that, by definition, v2 = vp∗ .
Further, if p∗ = ∣N ∣+ 1, vb is empty and thus v2 does not depend on vb. (8) results

in two solutions, v+2 and v−1 , corresponding to the sign ambiguity in (8). We choose

the solution v∗2 with the smaller absolute value.

If p∗ > ∣N ∣+1, the constrained optimization in (4)-(6) is equivalent to the following:

v22 =min
vb

min
{+,−}
(
−d1(vb) ±

√
d1(vb)2 − 4d0d2(vb)
2d0

)
2

, (9)

where the inner minimization is over the sign in the quadratic formula.

At this point, we have both v∗2 and v∗b . Recovering v∗1 using (7), we obtain v∗ =
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[v∗b , v∗1 , v∗2 ].

D Policy variable imputation
Panel event study estimation requires assumptions about the behavior of the pol-

icy variable outside the observed time range. In section 4.1 of the article, we es-

timated panel event studies assuming no unobserved changes in the policy variable

outside the estimation period. This imputation scheme is implemented using the

impute(nuchange) option.

xtevent allows for other schemes to impute the policy variable. For example,

xtevent can assume that the policy variable follows staggered adoption, using the

impute(stag) option. It can also impute missing values of the policy variable inside

the observed date range using the impute(instag) option.

To illustrate these options, we use the simulated data example of section 4 of

the article and show the implied event-time dummies under the different imputation

schemes. For the example, we add some missing values to unit 19. Then, we differ-

entiate the policy variable. xtevent uses leads and lags of the differentiated policy

variable to generate the event-time dummies, following equation (2).

First, we ask xtevent to generate the event-time dummies without any imputation

and specify the option savek(stub, noestimate) to save them without estimating

the model.

. use simulation_data_dynamic.dta, clear

. qui xtset id t

. qui replace z=. if id==19 & (t==35 | t>=39)

. qui gen z_d=d.z

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z)

> window(5) savek(v, noestimate)

The event-time dummies with a “v” prefix and ending in m# or p# correspond to

leads and lags of the differentiated policy variable, as described in section 3 of the

article. Now, we display these event-time dummies for unit 19 in some periods.

. list id t z z_d v_eq_m6 -v_eq_m1 if id==19 & t>=29, ///

> separator(4) noobs

id t z z_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3 v_eq_m2 v_eq_m1
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19 29 0 0 1 0 0 0 0 0

19 30 0 0 . . 0 0 0 0

19 31 0 0 1 . . 0 0 0

19 32 0 0 0 1 . . 0 0

19 33 0 0 0 0 1 . . 0

19 34 0 0 . . 0 1 . .

19 35 . . . . . 0 1 .

19 36 0 . . . . . 0 1

19 37 1 1 . . . . . 0

19 38 1 0 . . . . . .

19 39 . . . . . . . .

19 40 . . . . . . . .

Notice that the event-time dummies have missing values at the bottom of the

table because we have not made any assumptions about the policy variable outside

the observed time range. Besides, notice that the event-time dummies have some

missing values inside the observed time range due to the missing value in the policy

variable in period 35. From equation (2), this latter missing value translates into two

inner missing values in the event-time dummies and one missing value in the case of

the left endpoint.

To impute the policy variable under staggered adoption, we use the impute(stag)

option. xtevent verifies that the policy variable follows staggered adoption. If so,

xtevent imputes the policy variable outside the observed time range. Then, it uses

the imputed policy variable to generate the event-time dummies and endpoints. We

add the suboption saveimp to save the imputed policy variable as z imputed. We also

differentiate the new imputed policy variable to see how its leads and lags translate

to new event-time dummies.

. cap drop v*

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///

> window(5) savek(v, noestimate) impute(stag, saveimp)

. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the

differentiated imputed policy variable, some event-time dummies, and the left end-

point generated using the imputed policy variable. First, the policy variable has been

imputed in the observed time range. Nonetheless, the imputation also assumes that
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the policy variable in periods after t = 40 would have the same value as the one in

that last period. This imputation can be seen in the event-time dummies, which now

have zeros corresponding to leads of the differentiated policy variable in periods after

40.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///

> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3

19 29 0 0 0 1 0 0 0

19 30 0 0 0 . . 0 0

19 31 0 0 0 1 . . 0

19 32 0 0 0 0 1 . .

19 33 0 0 0 0 0 1 .

19 34 0 0 0 0 0 0 1

19 35 . . . 0 0 0 0

19 36 0 0 . 0 0 0 0

19 37 1 1 1 0 0 0 0

19 38 1 1 0 0 0 0 0

19 39 . 1 0 0 0 0 0

19 40 . 1 0 0 0 0 0

We now ask xtevent to impute the policy variable using the impute(instag)

option. This imputation scheme lets us impute missing values in the policy variable

outside and inside the observed time range. As described in section 3 of the article, the

impute(instag) option implements the impute(stag) option, but it also imputes

missing values inside the observed time range in cases where it is possible to assume

some value based on the policy values in surrounding periods. As in the previous

example, we also generate the differentiated imputed policy variable for comparison.

. cap drop v* z_imputed z_imputed_d

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///

> window(5) savek(v, noestimate) impute(instag, saveimp)

. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the

differentiated imputed policy variable, some event-time dummies, and the left end-

point generated with the imputed policy variable. First, the imputed policy variable
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does not have missing values inside or outside the event-time range. As in the exam-

ple using impute(stag), the event-time dummies have zeros corresponding to leads

of the differentiated policy variable in periods greater than 40. Additionally, now the

event-time dummies do not have missing values inside the event-time range.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///

> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3

19 29 0 0 0 1 0 0 0

19 30 0 0 0 1 0 0 0

19 31 0 0 0 1 0 0 0

19 32 0 0 0 0 1 0 0

19 33 0 0 0 0 0 1 0

19 34 0 0 0 0 0 0 1

19 35 . 0 0 0 0 0 0

19 36 0 0 0 0 0 0 0

19 37 1 1 1 0 0 0 0

19 38 1 1 0 0 0 0 0

19 39 . 1 0 0 0 0 0

19 40 . 1 0 0 0 0 0

E Estimation in repeated cross-sectional datasets
xtevent allows estimation with repeated cross-sectional datasets when policyvar

varies at the group level, and panelvar identifies the groups. For instance, pan-

elvar could indicate states at which policyvar changes, while the observations in

the dataset could be individuals in each state. xtevent allows estimations in these

settings directly with the repeatedcs option. It also allows for using the two step

procedure described in Hansen (2007). To use the latter method, the user should first

use the get unit time effects command to estimate unit-time effects and then use

these estimations as input for xtevent.

We illustrate the use of get unit time effects. First, we create a variable state

that represents groups where individuals receive the treatment in the same period.

Then, we call get unit time effects. It saves a dta file with the unit-time effects.

. gen state=eventtime

. xtset, clear
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. get_unit_time_effects y x, panelvar(state) timevar(t)

> saving("effect_file.dta", replace)

(output omitted )

file .outputanalysiseffect_file.dta saved

Then, we keep one observation per state-time in the repeated cross-sectional data

and merge the dataset with the unit-time effects. Afterwards, we execute xtevent.

Since we use a smaller dataset to estimate the event-study, this method can be faster

than using the repeatedcs option.

. qui bysort state t (z): keep if _n==1

. keep state t z

. qui merge m:1 state t using effect_file.dta, nogen

. xtevent _unittimeeffects, panelvar(state) timevar(t) policyvar(z) window(5)

(output omitted )

F Estimation with heterogenous treatment effects

in staggered adoption settings
xtevent allows estimation permitting heterogeneous treatment effects in staggered

adoption settings. Following the approach of Sun and Abraham (2021), we introduce

a setting with heterogeneous treatment effects across treatment cohorts as follows:

let t⋆(i) be the cohort for unit i, namely, the period when unit i adopts the policy.

Denote the effects of the policy on the outcome for cohort t⋆ as {βm,t⋆}Mm=−G. The

equation for the outcome becomes:

yit = αi + γt + q′itψ +
M

∑
m=−G

βm,t⋆(i)zi,t−m +Cit + εit.

To estimate the event-study path of the outcome in this setting, xtevent esti-

mates an extended version of equation (2) interacting the event-time dummies with

cohort indicators as proposed in Freyaldenhoven et al. (Forthcoming):
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yit =∑
c

M+LM−1
∑

k=−G−LG

(1{t⋆(i) = c}) (δk,c∆zi,t−k + δM+LM ,czi,t−M−LM
+ δ−G−LG−1,c(1 − zi,t+G+LG

))

+αi + γt + q′itψ +Cit + εit,
(10)

Using the two-way fixed effects estimator to estimate (10), this is equivalent to

the estimator proposed in Sun and Abraham (2021). xtevent further allows to es-

timate (10) using any of the estimation strategies outlined in Section 2.1., except IV

estimation.

xtevent estimates (10) on a sample defined by the cohort and control cohort

options. In staggered adoption settings, the option cohort(create) asks xtevent

to automatically generate a categorical variable for treatment cohorts. xtevent sets

the value of this categorical variable to the value of the time variable the first time

a unit is treated. For units that are never treated, xtevent sets the value of this

variable to missing. Similarly, the control cohort(create) option asks xtevent

to automatically generate an indicator for the control cohort. xtevent sets this

indicator to 1 for never-treated units and zero otherwise.

If the cohort in control cohort is a never-treated cohort, xtevent estimates

equation (10) on the whole sample. Otherwise, xtevent estimates (10) on the subset

of periods when observations in the control cohort have not yet been treated. By

default, the estimation excludes always-treated cohorts.

After obtaining estimates δ̂k,c for k = −G −LG − 1, ...,M +LM and for each cohort

c, xtevent obtains the estimate of the average treatment effect at event-time k, δ̂k,

as an average of the δ̂k,c estimates weighting by the share of observations from cohort

c in each relative time k (Sun and Abraham, 2021):

δ̂k =∑
c

δk,cP̂ r {t⋆(i) = c ∣ t⋆(i) ∈ [−k, T − k]} .

The variance of δ̂k is obtained using the formulas in Appendix C.1 of Sun and Abra-

ham (2021).

To permit greater flexibility, xtevent also allows estimation of (10) outside stag-
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gered adoption settings or in settings where the user wants to aggregate treatment co-

horts for user-provided cohort and control cohort variables through the cohort(variable

varname, [,force]) and control cohort(variable varname, [,force]) options.
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